More Personalized, More Useful? Reinvestigating Recommendation Mechanisms in E-Commerce

匹配(统计) 资源(消歧) 个性化营销 推荐系统 个性化医疗 计算机科学 个性化 电子商务 互联网隐私 感知 万维网 知识管理 数字营销 心理学 统计 生物 遗传学 企业对政府 神经科学 营销投资回报率 数学 计算机网络
作者
Tuan Nguyen,Pei‐Fang Hsu
出处
期刊:International Journal of Electronic Commerce [Informa]
卷期号:26 (1): 90-122 被引量:26
标识
DOI:10.1080/10864415.2021.2010006
摘要

To what extent should firms invest in personalized recommendation mechanisms, and are all personalized recommendations equally welcomed by online consumers? To answer these questions through the lens of resource matching theory, we investigate users' perceptions of three types of personalized recommendations: one-to-all (nonpersonalized), one-to-many (partially personalized), and one-to-one (most personalized). Using both experimental and configurational analysis approaches, our study posits that online consumers differently experience each type of personalized recommendation and their resource matching sources (familiarity, complexity, external information) in various shopping contexts. Our study abductively formulates several theoretical propositions regarding the usefulness of each personalized recommendation. We show empirical evidence that the most personalized recommendation is not always perceived to be as useful as conventionally believed. In particular, highly personalized recommendation is found to be useful for recommending simple technology products for experienced customers. Ironically, a partially personalized recommendation, one-to-many, is perceived as the most useful mechanism for recommending complicated technology products. Based on our findings, we suggest that e-commerce vendors consider the three resource matching dimensions to avoid collecting more than enough customer data, thus enabling adequately personalized recommendation results on their online digital platforms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
1秒前
江南之南完成签到 ,获得积分10
1秒前
也许飞鸟能到那个木屋完成签到,获得积分10
2秒前
222发布了新的文献求助10
2秒前
现代柠檬完成签到,获得积分10
3秒前
wUP完成签到,获得积分10
4秒前
Zzzzz完成签到,获得积分10
5秒前
6秒前
zjq发布了新的文献求助10
6秒前
领导范儿应助lj采纳,获得10
7秒前
爱听歌的紫菱完成签到,获得积分10
8秒前
yinch完成签到,获得积分10
11秒前
11秒前
天天快乐应助崔嘉坤采纳,获得10
12秒前
慕青应助无语采纳,获得10
12秒前
哈哈哈完成签到,获得积分10
12秒前
13秒前
14秒前
科研通AI6应助科研通管家采纳,获得10
14秒前
wanci应助科研通管家采纳,获得10
14秒前
共享精神应助科研通管家采纳,获得10
15秒前
蜗牛应助科研通管家采纳,获得10
15秒前
浮游应助科研通管家采纳,获得10
15秒前
浮游应助科研通管家采纳,获得10
15秒前
Lucas应助科研通管家采纳,获得10
15秒前
科研通AI6应助科研通管家采纳,获得30
15秒前
15秒前
汉堡包应助科研通管家采纳,获得10
15秒前
NexusExplorer应助科研通管家采纳,获得30
15秒前
Owen应助科研通管家采纳,获得10
15秒前
情怀应助科研通管家采纳,获得10
16秒前
16秒前
Ava应助科研通管家采纳,获得10
16秒前
科研通AI6应助科研通管家采纳,获得10
16秒前
ding应助科研通管家采纳,获得10
16秒前
汉堡包应助科研通管家采纳,获得10
16秒前
顾矜应助科研通管家采纳,获得10
16秒前
桐桐应助科研通管家采纳,获得10
16秒前
深情安青应助科研通管家采纳,获得10
17秒前
丘比特应助科研通管家采纳,获得10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mentoring for Wellbeing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1061
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5496863
求助须知:如何正确求助?哪些是违规求助? 4594479
关于积分的说明 14445063
捐赠科研通 4527042
什么是DOI,文献DOI怎么找? 2480630
邀请新用户注册赠送积分活动 1465088
关于科研通互助平台的介绍 1437844