A novel model for water quality prediction caused by non-point sources pollution based on deep learning and feature extraction methods

自回归积分移动平均 计算机科学 水质 人工智能 深度学习 支持向量机 人工神经网络 模块化设计 回归 分水岭 机器学习 极限学习机 污染 时间序列 统计 数学 操作系统 生态学 生物
作者
Hang Wan,Rui Xu,Meng Zhang,Yanpeng Cai,Jian Li,Xia Shen
出处
期刊:Journal of Hydrology [Elsevier BV]
卷期号:612: 128081-128081 被引量:50
标识
DOI:10.1016/j.jhydrol.2022.128081
摘要

Non-point source (NPS) pollution is an important factor affecting the quality of water environment. In recent years, a large number of online water quality monitoring stations have been used to obtain continuous time series water quality monitoring data. These data provide the necessary basis for the application of deep learning methods in water quality prediction. However, the prediction accuracy of traditional deep learning methods is low, especially in predicting the water quality with NPS pollution. Aiming to address this limitation, a novel deep learning model named SOD-VGG-LSTM with the simulation-observation difference (SOD) modular based on physical process, the visual geometry (VGG) modular reflecting spatial characteristics, and the long short-term memory (LSTM) modular based on deep learning method was developed to improve the accuracy of the water quality prediction with NPS pollution. The established model can overcome the problem that mechanism models can not predict the changes of water quality on the hourly or minute time scale. The model was applied in Lijiang River watershed. Experimental results indicated that the proposed model had the highest accuracy in the extreme value prediction compared with the mechanism model and LSTM model. The maximum relative errors between the predicted and observed results for DO, CODMn, NH3-N, and TP were 8.47%, 19.76%, 24.1%, and 35.4%, respectively. The model evaluation demonstrated that the established SOD-VGG-LSTM model achieved superior computational performance compared to Auto Regression Integreate Moving Average model (ARIMA), Support Vector Regression model (SVR), and Recurrent Neural Network model (RNN). The evaluation results showed that SOD-VGG-LSTM achieved 3.2–39.3% higher R2 than ARIMA, SVR and RNN. The proposed model can provide a new method for water quality prediction with NPS pollution.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助3233129092采纳,获得30
刚刚
1秒前
3秒前
4秒前
5秒前
5秒前
afnfg完成签到 ,获得积分10
5秒前
沐风听雨完成签到 ,获得积分10
6秒前
三文鱼发布了新的文献求助10
6秒前
大个应助邵洋采纳,获得10
7秒前
7秒前
legend完成签到,获得积分10
7秒前
万能图书馆应助cmt采纳,获得10
7秒前
Jasper应助漂泊采纳,获得10
7秒前
嘲风发布了新的文献求助30
8秒前
10秒前
10秒前
guoguo1119完成签到,获得积分10
11秒前
11秒前
西柚发布了新的文献求助10
12秒前
12秒前
hermit发布了新的文献求助10
13秒前
三文鱼完成签到,获得积分20
14秒前
标致的问安完成签到,获得积分20
14秒前
guoguo1119发布了新的文献求助10
14秒前
15秒前
Lionnn发布了新的文献求助10
16秒前
蜡笔小新完成签到,获得积分10
17秒前
知安关注了科研通微信公众号
18秒前
友好紊发布了新的文献求助10
19秒前
11哥应助mo采纳,获得10
19秒前
斯文败类应助fash采纳,获得10
21秒前
wk_sea发布了新的文献求助10
21秒前
21秒前
laola完成签到,获得积分10
22秒前
冰魂应助会游泳的猪采纳,获得10
22秒前
要顺顺顺顺顺顺顺利完成签到 ,获得积分10
23秒前
刘柳完成签到 ,获得积分10
23秒前
铁柱xh完成签到 ,获得积分10
23秒前
所所应助友好紊采纳,获得10
25秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3783631
求助须知:如何正确求助?哪些是违规求助? 3328775
关于积分的说明 10238640
捐赠科研通 3044136
什么是DOI,文献DOI怎么找? 1670841
邀请新用户注册赠送积分活动 799923
科研通“疑难数据库(出版商)”最低求助积分说明 759171