Artificial intelligence using deep learning analysis of endoscopic ultrasonography images for the differential diagnosis of pancreatic masses

医学 超声科 人工智能 鉴别诊断 内镜超声检查 放射科 普通外科 病理 内窥镜检查 计算机科学
作者
Takamichi Kuwahara,Kazuo Hara,Nobumasa Mizuno,Shin Haba,Nozomi Okuno,Yasuhiro Kuraishi,Daiki Fumihara,Takafumi Yanaidani,Sho Ishikawa,Tsukasa Yasuda,Masanori Yamada,Sachiyo Onishi,Keisaku Yamada,Tsutomu Tanaka,Masahiro Tajika,Yasumasa Niwa,Rui Yamaguchi,Yasuhiro Shimizu
出处
期刊:Endoscopy [Thieme Medical Publishers (Germany)]
卷期号:55 (02): 140-149 被引量:48
标识
DOI:10.1055/a-1873-7920
摘要

Abstract Background There are several types of pancreatic mass, so it is important to distinguish between them before treatment. Artificial intelligence (AI) is a mathematical technique that automates learning and recognition of data patterns. This study aimed to investigate the efficacy of our AI model using endoscopic ultrasonography (EUS) images of multiple types of pancreatic mass (pancreatic ductal adenocarcinoma [PDAC], pancreatic adenosquamous carcinoma [PASC], acinar cell carcinoma [ACC], metastatic pancreatic tumor [MPT], neuroendocrine carcinoma [NEC], neuroendocrine tumor [NET], solid pseudopapillary neoplasm [SPN], chronic pancreatitis, and autoimmune pancreatitis [AIP]). Methods Patients who underwent EUS were included in this retrospective study. The included patients were divided into training, validation, and test cohorts. Using these cohorts, an AI model that can distinguish pancreatic carcinomas from noncarcinomatous pancreatic lesions was developed using a deep-learning architecture and the diagnostic performance of the AI model was evaluated. Results 22 000 images were generated from 933 patients. The area under the curve, sensitivity, specificity, and accuracy (95 %CI) of the AI model for the diagnosis of pancreatic carcinomas in the test cohort were 0.90 (0.84–0.97), 0.94 (0.88–0.98), 0.82 (0.68–0.92), and 0.91 (0.85–0.95), respectively. The per-category sensitivities (95 %CI) of each disease were PDAC 0.96 (0.90–0.99), PASC 1.00 (0.05–1.00), ACC 1.00 (0.22–1.00), MPT 0.33 (0.01–0.91), NEC 1.00 (0.22–1.00), NET 0.93 (0.66–1.00), SPN 1.00 (0.22–1.00), chronic pancreatitis 0.78 (0.52–0.94), and AIP 0.73 (0.39–0.94). Conclusions Our developed AI model can distinguish pancreatic carcinomas from noncarcinomatous pancreatic lesions, but external validation is needed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jiujiuwo完成签到,获得积分10
1秒前
CipherSage应助ykxa采纳,获得10
1秒前
1秒前
6秒前
L_online完成签到 ,获得积分10
6秒前
啵啵冰应助清晨采纳,获得50
7秒前
9秒前
学术完成签到 ,获得积分10
12秒前
13秒前
13秒前
15秒前
林夏完成签到,获得积分10
15秒前
myjf发布了新的文献求助10
16秒前
木木三完成签到 ,获得积分0
17秒前
Fangfang发布了新的文献求助30
18秒前
18秒前
假面绅士发布了新的文献求助10
19秒前
20秒前
归尘应助cxwcn采纳,获得10
22秒前
科研通AI5应助cxwcn采纳,获得10
22秒前
医学林发布了新的文献求助10
24秒前
请问发布了新的文献求助10
24秒前
苑小苑完成签到,获得积分10
31秒前
myjf完成签到,获得积分10
31秒前
小广完成签到,获得积分10
34秒前
Bin关闭了Bin文献求助
35秒前
小二郎应助科研通管家采纳,获得10
38秒前
乐乐应助科研通管家采纳,获得10
38秒前
ding应助科研通管家采纳,获得10
38秒前
英姑应助科研通管家采纳,获得10
38秒前
科研通AI2S应助科研通管家采纳,获得10
38秒前
38秒前
38秒前
科研通AI5应助科研通管家采纳,获得10
38秒前
ningwu完成签到,获得积分10
39秒前
晴子完成签到,获得积分10
40秒前
日常常完成签到,获得积分10
40秒前
安白发布了新的文献求助10
41秒前
科研通AI5应助CY采纳,获得10
43秒前
45秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777922
求助须知:如何正确求助?哪些是违规求助? 3323546
关于积分的说明 10214842
捐赠科研通 3038738
什么是DOI,文献DOI怎么找? 1667634
邀请新用户注册赠送积分活动 798236
科研通“疑难数据库(出版商)”最低求助积分说明 758315