亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Screening membraneless organelle participants with machine-learning models that integrate multimodal features

蛋白质组 计算生物学 细胞器 计算机科学 人工智能 生物 化学 机器学习 生物信息学 生物系统 生物化学
作者
Zhaoming Chen,Chao Hou,Liang Wang,Chunyu Yu,Taoyu Chen,Boyan Shen,Yaoyao Hou,Pilong Li,Tingting Li
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [National Academy of Sciences]
卷期号:119 (24) 被引量:75
标识
DOI:10.1073/pnas.2115369119
摘要

Protein self-assembly is one of the formation mechanisms of biomolecular condensates. However, most phase-separating systems (PS) demand multiple partners in biological conditions. In this study, we divided PS proteins into two groups according to the mechanism by which they undergo PS: PS-Self proteins can self-assemble spontaneously to form droplets, while PS-Part proteins interact with partners to undergo PS. Analysis of the amino acid composition revealed differences in the sequence pattern between the two protein groups. Existing PS predictors, when evaluated on two test protein sets, preferentially predicted self-assembling proteins. Thus, a comprehensive predictor is required. Herein, we propose that properties other than sequence composition can provide crucial information in screening PS proteins. By incorporating phosphorylation frequencies and immunofluorescence image-based droplet-forming propensity with other PS-related features, we built two independent machine-learning models to separately predict the two protein categories. Results of independent testing suggested the superiority of integrating multimodal features. We performed experimental verification on the top-scored proteins DHX9, K i -67, and NIFK. Their PS behavior in vitro revealed the effectiveness of our models in PS prediction. Further validation on the proteome of membraneless organelles confirmed the ability of our models to identify PS-Part proteins. We implemented a web server named PhaSePred ( http://predict.phasep.pro/ ) that incorporates our two models together with representative PS predictors. PhaSePred displays proteome-level quantiles of different features, thus profiling PS propensity and providing crucial information for identification of candidate proteins.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彭于晏应助任性的一斩采纳,获得10
6秒前
大胆的小懒猪完成签到 ,获得积分10
6秒前
non平行线完成签到,获得积分10
8秒前
11秒前
yy完成签到,获得积分10
13秒前
my发布了新的文献求助10
16秒前
小马甲应助风华正茂采纳,获得30
18秒前
汉堡包应助SHlby采纳,获得10
23秒前
JamesPei应助WATeam采纳,获得10
34秒前
46秒前
46秒前
48秒前
WATeam发布了新的文献求助10
53秒前
海绵梅完成签到 ,获得积分10
1分钟前
1分钟前
cdercder应助任性的一斩采纳,获得10
1分钟前
1分钟前
WATeam完成签到,获得积分10
1分钟前
鞭霆发布了新的文献求助10
1分钟前
呆呆完成签到,获得积分20
1分钟前
顾矜应助优雅柏柳采纳,获得10
1分钟前
852应助南风采纳,获得30
1分钟前
1分钟前
可爱水蓝发布了新的文献求助10
1分钟前
雪白若山完成签到,获得积分10
2分钟前
2分钟前
南风发布了新的文献求助30
2分钟前
雪白若山发布了新的文献求助10
2分钟前
Orange应助低空飞行采纳,获得10
2分钟前
李爱国应助任性的一斩采纳,获得10
2分钟前
2分钟前
2分钟前
科研通AI5应助雪白若山采纳,获得10
2分钟前
低空飞行完成签到,获得积分10
2分钟前
2分钟前
yoona发布了新的文献求助10
2分钟前
低空飞行发布了新的文献求助10
2分钟前
二牛完成签到,获得积分10
2分钟前
yoona完成签到,获得积分10
2分钟前
2分钟前
高分求助中
Worked Bone, Antler, Ivory, and Keratinous Materials 1000
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
建筑材料检测与应用 370
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3830405
求助须知:如何正确求助?哪些是违规求助? 3372791
关于积分的说明 10475344
捐赠科研通 3092585
什么是DOI,文献DOI怎么找? 1702141
邀请新用户注册赠送积分活动 818797
科研通“疑难数据库(出版商)”最低求助积分说明 771087