Fabricating Four-Element Doped Carbon Dots-Based Fluorescent Ratiometric Reporter Platform for CRISPR/Cas-Driven Precise Sensing of Nucleic Acids

作者
Muhammad Sohail,Song Ma,Barira Mushtaq,M. Haider,Bingzhi Li,Xing Zhang,He Huang
出处
期刊:Analytical Chemistry [American Chemical Society]
卷期号:97 (43): 23868-23878
标识
DOI:10.1021/acs.analchem.5c03228
摘要

Conventional CRISPR/Cas sensing platforms exhibit poor efficiency concerning reporter-based demerits, including their interference-labile nature, photobleaching, low robustness due to a single output signal, and probe-concentration dependence. Herein, a carbon dots (CDs)-based dual-emissive fluorescent ratiometric CRISPR/Cas reporter platform was fabricated for biosensing and other analytical applications to bottleneck the demerits of conventional reporters, integrating the benefits of a ratiometric strategy and four-element doped carbon dots (4D CDs) as a transducer. Briefly, doping enhances the optical and physicochemical traits of CDs and minimizes the effect of the interfering species. A series of state-of-the-art N, P, S, and Cu codoped CDs (4D CDs) were synthesized using the hydrothermal approach and statistical tools, such as Box-Behnken design, analysis of variance, and others, enhancing photophysical traits, surface features, and sensitivity of CDs. The red-emissive CDs were prepared by using the same procedure but different precursors. The optimum 4D CDs (blue-emissive) and red-emissive CDs were used to unleash the principle of the fluorescent ratiometric CRISPR/Cas reporter system for diverse applications. Finally, the designed 4D CDs-based CRISPR/Cas biosensor was applied for nucleic acid monitoring, such as the COVID-19 nucleic acid. This project disclosed the controlled-doping principle to synthesize 4D CDs and unleashed the mechanism of ratiometric dual-emissive CRISPR/Cas-powered reporters for precise sensing applications. We anticipate the implementation of this technology in commercial analytical, biosensing, point-of-care, and other applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Steve完成签到,获得积分10
1秒前
1秒前
可爱的函函应助左右采纳,获得10
2秒前
2秒前
CodeCraft应助呆呆采纳,获得10
2秒前
量子星尘发布了新的文献求助10
3秒前
学习使我快乐完成签到,获得积分10
3秒前
sdh完成签到,获得积分10
3秒前
3秒前
zgrmws给自信的水蜜桃的求助进行了留言
4秒前
脑洞疼应助kkkk采纳,获得10
4秒前
sfwrbh完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
4秒前
5秒前
5秒前
科研通AI2S应助lean采纳,获得10
5秒前
小蘑菇应助paltte采纳,获得10
5秒前
6秒前
6秒前
wss发布了新的文献求助10
6秒前
7秒前
7秒前
7秒前
7秒前
7秒前
8秒前
8秒前
hbutsj发布了新的文献求助10
9秒前
10秒前
文献发布了新的文献求助10
10秒前
xiaohe发布了新的文献求助10
10秒前
我爱科研科研爱我应助呢n采纳,获得30
10秒前
10秒前
10秒前
11秒前
JJJLX发布了新的文献求助10
11秒前
wanci应助jerry采纳,获得10
11秒前
和花花完成签到,获得积分10
12秒前
YAYA发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5662283
求助须知:如何正确求助?哪些是违规求助? 4841521
关于积分的说明 15099027
捐赠科研通 4820705
什么是DOI,文献DOI怎么找? 2580125
邀请新用户注册赠送积分活动 1534268
关于科研通互助平台的介绍 1492947