DSwinIR: Rethinking Window-Based Attention for Image Restoration

作者
Gang Wu,Junjun Jiang,Kui Jiang,Xianming Liu,Liqiang Nie
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:PP: 1-18
标识
DOI:10.1109/tpami.2025.3646016
摘要

Image restoration has witnessed significant advancements with the development of deep learning models. Transformer-based models, particularly those using window-based self-attention, have become a dominant force. However, their performance is constrained by the rigid, non-overlapping window partitioning scheme, which leads to insufficient feature interaction across windows and limited receptive fields. This highlights the need for more adaptive and flexible attention mechanisms. In this paper, we propose the Deformable Sliding Window Transformer for Image Restoration (DSwinIR), a new attention mechanism: the Deformable Sliding Window (DSwin) Attention. This mechanism introduces a token-centric and content-aware paradigm that moves beyond the grid and fixed window partition. It comprises two complementary components. First, it replaces the rigid partitioning with a token-centric sliding window paradigm, making it effective at eliminating boundary artifacts. Second, it incorporates a content-aware deformable sampling strategy, which allows the attention mechanism to learn data-dependent offsets and actively shape its receptive field to focus on the most informative image regions. Extensive experiments show that DSwinIR achieves strong results, including stateoftheart performance on several evaluated benchmarks. For instance, in all-in-one image restoration, our DSwinIR surpasses the most recent backbone GridFormer by 0.53 dB on the three-task benchmark and 0.87 dB on the five-task benchmark. The code and pre-trained models are available at https://github.com/Aitical/DSwinIR.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Cheng应助浊酒采纳,获得10
刚刚
balmy发布了新的文献求助10
刚刚
不要慌完成签到 ,获得积分10
刚刚
怡然冷安完成签到,获得积分10
刚刚
手可摘星辰不去高声语完成签到,获得积分20
刚刚
刚刚
刚刚
胖虎不胖发布了新的文献求助10
1秒前
1秒前
研友_Z1Xdan发布了新的文献求助10
1秒前
1秒前
2秒前
wanci应助Zxz采纳,获得10
2秒前
2秒前
奋斗的猪发布了新的文献求助10
2秒前
2秒前
温宇发布了新的文献求助10
2秒前
Zx_1993应助优雅的砖头采纳,获得10
3秒前
3秒前
徐徐发布了新的文献求助10
4秒前
4秒前
张亭亭发布了新的文献求助10
5秒前
23发布了新的文献求助10
5秒前
沈昊发布了新的文献求助10
5秒前
xubobo发布了新的文献求助10
5秒前
5秒前
6秒前
青山见我发布了新的文献求助10
6秒前
无花果应助潇洒平松采纳,获得10
6秒前
bhkwxdxy发布了新的文献求助10
6秒前
lei发布了新的文献求助10
6秒前
7秒前
EnguangChen应助tomiallen采纳,获得10
7秒前
7秒前
7秒前
负责中恶发布了新的文献求助10
7秒前
敏感板栗完成签到,获得积分10
8秒前
刘寄奴发布了新的文献求助10
8秒前
8秒前
科研通AI2S应助Cr采纳,获得10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1400
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5512510
求助须知:如何正确求助?哪些是违规求助? 4606940
关于积分的说明 14501746
捐赠科研通 4542246
什么是DOI,文献DOI怎么找? 2488959
邀请新用户注册赠送积分活动 1470999
关于科研通互助平台的介绍 1443152