Molecular biomarkers, network biomarkers, and dynamic network biomarkers for diagnosis and prediction of rare diseases

生物医学 疾病 生物标志物发现 生物标志物 分子生物标志物 计算生物学 药物开发 药物发现 鉴定(生物学) 基因组学 生物网络 生物信息学 精密医学 翻译生物信息学 医学 生物 蛋白质组学 药品 病理 基因 药理学 基因组 遗传学 内科学 植物
作者
Shibing Tang,Kai Yuan,Luonan Chen
出处
期刊:Fundamental research [Elsevier BV]
卷期号:2 (6): 894-902 被引量:3
标识
DOI:10.1016/j.fmre.2022.07.011
摘要

The difficulty of converting scientific research findings into novel pharmacological treatments for rare and life-threatening diseases is enormous. Biomarkers related to multiple biological processes involved in cell growth, proliferation, and disease occurrence have been identified in recent years with the development of immunology, molecular biology, and genomics technologies. Biomarkers are capable of reflecting normal physiological processes, pathological processes, and the response to therapeutic intervention; as such, they play vital roles in disease diagnosis, prevention, drug response, and other aspects of biomedicine. The discovery of valuable biomarkers has become a focal point of current research. Numerous studies have identified molecular biomarkers based on the differential expression/concentration of molecules (e.g., genes/proteins) for disease state diagnosis, characterization, and treatment. Although technological breakthroughs in molecular analysis platforms have enabled the identification of a large number of candidate biomarkers for rare diseases, only a small number of these candidates have been properly validated for use in patient treatment. The traditional molecular biomarkers may lose vital information by ignoring molecular associations/interactions, and thus the concept of network biomarkers based on differential associations/correlations of molecule pairs has been established. This approach promises to be more stable and reliable in diagnosing disease states. Furthermore, the newly-emerged dynamic network biomarkers (DNBs) based on differential fluctuations/correlations of molecular groups are able to recognize pre-disease states or critical states instead of disease states, thereby achieving rare disease prediction or predictive/preventative medicine and providing deep insight into the dynamic characteristics of disease initiation and progression.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
戚薇发布了新的文献求助10
刚刚
大力梦菲关注了科研通微信公众号
1秒前
1秒前
情怀应助lianyang采纳,获得10
3秒前
3秒前
3秒前
科研通AI5应助酷炫的荧采纳,获得10
4秒前
4秒前
文武完成签到 ,获得积分10
5秒前
满眼星辰发布了新的文献求助10
5秒前
英姑应助戚薇采纳,获得10
6秒前
祝风华完成签到 ,获得积分10
6秒前
科研通AI5应助kokodayou采纳,获得10
6秒前
白名单完成签到,获得积分10
7秒前
orixero应助清水采纳,获得10
8秒前
娇娇大王发布了新的文献求助10
8秒前
一只想做科研的狗完成签到,获得积分10
8秒前
天天飞人完成签到,获得积分10
8秒前
9秒前
淡然的宛秋完成签到,获得积分10
9秒前
9秒前
10秒前
10秒前
10秒前
内向雨南完成签到,获得积分10
12秒前
内向雨南发布了新的文献求助10
14秒前
大力梦菲发布了新的文献求助30
16秒前
16秒前
Lee发布了新的文献求助10
16秒前
Owen应助哈理老萝卜采纳,获得10
17秒前
瑜瑜发布了新的文献求助10
17秒前
和风发布了新的文献求助10
17秒前
18秒前
21秒前
cccttt发布了新的文献求助10
21秒前
LEE123完成签到,获得积分10
21秒前
清水发布了新的文献求助10
22秒前
许大脚完成签到,获得积分10
26秒前
27秒前
酷波er应助雨夜聆风采纳,获得10
29秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
武汉作战 石川达三 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Understanding Interaction in the Second Language Classroom Context 300
Fractional flow reserve- and intravascular ultrasound-guided strategies for intermediate coronary stenosis and low lesion complexity in patients with or without diabetes: a post hoc analysis of the randomised FLAVOUR trial 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3810513
求助须知:如何正确求助?哪些是违规求助? 3354951
关于积分的说明 10373613
捐赠科研通 3071505
什么是DOI,文献DOI怎么找? 1686999
邀请新用户注册赠送积分活动 811324
科研通“疑难数据库(出版商)”最低求助积分说明 766616