Improved spectral clustering using three-way decisions

光谱聚类 聚类分析 计算机科学 离群值 代表(政治) 模式识别(心理学) 噪音(视频) 人工智能 相似性(几何) 数据挖掘 相关聚类 数学 图像(数学) 政治 政治学 法学
作者
Shahzad Khan,Omar Khan,Nouman Azam,Ihsan Ullah
出处
期刊:Information Sciences [Elsevier BV]
卷期号:641: 119113-119113 被引量:8
标识
DOI:10.1016/j.ins.2023.119113
摘要

Spectral clustering is an unsupervised machine learning algorithm that groups similar data points into clusters. The method generally works by modeling pair-wise data points as input similarity matrices, and then performs their eigen-decomposition. Clustering is then carried out from this high-dimensional representation by utilizing spectral properties. Here, several eigen-points are mapped and merged to a lower dimensional sub-space iteratively. In contrast to traditional methods, spectral clustering is well poised to solve problems involving complex patterns. However, the approach is sensitive to outliers, measurement errors, or perturbations in the original data. These then appear in the form of increased levels of spectral noise, especially in the higher ordered eigen-vectors. Consequently, the application of pre-processing and noise reduction techniques are important for its performance. In this article, we address this issue by introducing a three-way decision based approach to spectral clustering in order to make it insensitive to noise. Three-way decisions are classically applied to problems involving uncertainty and follow a ternary classification system involving actions of acceptance, rejection, and non-commitment. The proposed approach is tested on various standard datasets for verification and validation purposes. Results on the basis of these datasets demonstrate that the proposed approach outperforms classical spectral clustering by an average of 30%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
汉堡包应助mawenyu采纳,获得10
1秒前
FashionBoy应助AOTUMAN采纳,获得10
2秒前
hrenfa完成签到,获得积分20
3秒前
4秒前
4秒前
常存喜乐完成签到 ,获得积分10
5秒前
Dragonfln完成签到,获得积分10
8秒前
LingYing完成签到 ,获得积分10
8秒前
积极的沂关注了科研通微信公众号
8秒前
张豪英发布了新的文献求助10
9秒前
迷失自我发布了新的文献求助10
10秒前
10秒前
wushuwen发布了新的文献求助10
12秒前
Lucas应助XiaoMing采纳,获得10
13秒前
给大佬递茶关注了科研通微信公众号
14秒前
shann完成签到,获得积分10
16秒前
希望天下0贩的0应助花花采纳,获得10
16秒前
王一完成签到,获得积分10
17秒前
舒心豪英完成签到 ,获得积分10
18秒前
18秒前
ybwei2008_163发布了新的文献求助10
22秒前
23秒前
24秒前
JamesPei应助晚棠采纳,获得10
25秒前
25秒前
情怀应助mawenyu采纳,获得10
28秒前
ZQP发布了新的文献求助10
28秒前
酷波er应助荔枝吖采纳,获得10
29秒前
迷路冰巧发布了新的文献求助10
29秒前
小米粥完成签到 ,获得积分10
30秒前
顾矜应助ZQP采纳,获得10
32秒前
34秒前
鲤鱼灵阳给鲤鱼灵阳的求助进行了留言
34秒前
36秒前
37秒前
ZQP完成签到,获得积分10
38秒前
Jasper应助迷路冰巧采纳,获得10
39秒前
Owen应助Iwan采纳,获得10
40秒前
项听蓉完成签到,获得积分10
41秒前
41秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959257
求助须知:如何正确求助?哪些是违规求助? 3505580
关于积分的说明 11124469
捐赠科研通 3237323
什么是DOI,文献DOI怎么找? 1789046
邀请新用户注册赠送积分活动 871526
科研通“疑难数据库(出版商)”最低求助积分说明 802844