Improved spectral clustering using three-way decisions

光谱聚类 聚类分析 计算机科学 离群值 代表(政治) 模式识别(心理学) 噪音(视频) 人工智能 相似性(几何) 数据挖掘 相关聚类 数学 图像(数学) 政治学 政治 法学
作者
Shahzad Khan,Omar Khan,Nouman Azam,Ihsan Ullah
出处
期刊:Information Sciences [Elsevier BV]
卷期号:641: 119113-119113 被引量:8
标识
DOI:10.1016/j.ins.2023.119113
摘要

Spectral clustering is an unsupervised machine learning algorithm that groups similar data points into clusters. The method generally works by modeling pair-wise data points as input similarity matrices, and then performs their eigen-decomposition. Clustering is then carried out from this high-dimensional representation by utilizing spectral properties. Here, several eigen-points are mapped and merged to a lower dimensional sub-space iteratively. In contrast to traditional methods, spectral clustering is well poised to solve problems involving complex patterns. However, the approach is sensitive to outliers, measurement errors, or perturbations in the original data. These then appear in the form of increased levels of spectral noise, especially in the higher ordered eigen-vectors. Consequently, the application of pre-processing and noise reduction techniques are important for its performance. In this article, we address this issue by introducing a three-way decision based approach to spectral clustering in order to make it insensitive to noise. Three-way decisions are classically applied to problems involving uncertainty and follow a ternary classification system involving actions of acceptance, rejection, and non-commitment. The proposed approach is tested on various standard datasets for verification and validation purposes. Results on the basis of these datasets demonstrate that the proposed approach outperforms classical spectral clustering by an average of 30%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ding应助时尚的花卷采纳,获得10
刚刚
充电宝应助夏鹿采纳,获得10
刚刚
赘婿应助weiyi采纳,获得10
刚刚
科研通AI2S应助六根清净采纳,获得10
1秒前
幽默毛衣完成签到,获得积分10
3秒前
4秒前
4秒前
5秒前
chengkun完成签到,获得积分10
6秒前
握不住的沙完成签到,获得积分10
6秒前
7秒前
7秒前
coolru发布了新的文献求助10
8秒前
8秒前
东方既白发布了新的文献求助10
8秒前
LKOBES完成签到,获得积分10
8秒前
Akim应助标致的采纳,获得50
8秒前
wanci应助踏实的糖豆采纳,获得10
9秒前
9秒前
10秒前
糊涂的万发布了新的文献求助10
12秒前
12秒前
13秒前
9527King发布了新的文献求助10
14秒前
小绵羊发布了新的文献求助10
14秒前
是多少应助chengkun采纳,获得10
15秒前
陀飞轮完成签到,获得积分20
17秒前
哈比发布了新的文献求助10
17秒前
菜菜完成签到,获得积分10
18秒前
小灰灰完成签到 ,获得积分10
18秒前
18秒前
恒迹完成签到,获得积分10
19秒前
orixero应助squid采纳,获得20
19秒前
simon发布了新的文献求助10
20秒前
21秒前
胡无敌完成签到,获得积分10
21秒前
隐形曼青应助xinxin采纳,获得10
21秒前
Kaen完成签到,获得积分20
22秒前
Jasper应助小绵羊采纳,获得10
23秒前
炜哥完成签到,获得积分10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Technical Report No. 22 (Revised 2025): Process Simulation for Aseptically Filled Products 500
“Now I Have My Own Key”: The Impact of Housing Stability on Recovery and Recidivism Reduction Using a Recovery Capital Framework 500
PRINCIPLES OF BEHAVIORAL ECONOMICS Microeconomics & Human Behavior 400
The Red Peril Explained: Every Man, Woman & Child Affected 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5014880
求助须知:如何正确求助?哪些是违规求助? 4255559
关于积分的说明 13261960
捐赠科研通 4059224
什么是DOI,文献DOI怎么找? 2220107
邀请新用户注册赠送积分活动 1229482
关于科研通互助平台的介绍 1151986