Improved spectral clustering using three-way decisions

光谱聚类 聚类分析 计算机科学 离群值 代表(政治) 模式识别(心理学) 噪音(视频) 人工智能 相似性(几何) 数据挖掘 相关聚类 数学 图像(数学) 政治学 政治 法学
作者
Shahzad Khan,Omar Khan,Nouman Azam,Ihsan Ullah
出处
期刊:Information Sciences [Elsevier BV]
卷期号:641: 119113-119113 被引量:8
标识
DOI:10.1016/j.ins.2023.119113
摘要

Spectral clustering is an unsupervised machine learning algorithm that groups similar data points into clusters. The method generally works by modeling pair-wise data points as input similarity matrices, and then performs their eigen-decomposition. Clustering is then carried out from this high-dimensional representation by utilizing spectral properties. Here, several eigen-points are mapped and merged to a lower dimensional sub-space iteratively. In contrast to traditional methods, spectral clustering is well poised to solve problems involving complex patterns. However, the approach is sensitive to outliers, measurement errors, or perturbations in the original data. These then appear in the form of increased levels of spectral noise, especially in the higher ordered eigen-vectors. Consequently, the application of pre-processing and noise reduction techniques are important for its performance. In this article, we address this issue by introducing a three-way decision based approach to spectral clustering in order to make it insensitive to noise. Three-way decisions are classically applied to problems involving uncertainty and follow a ternary classification system involving actions of acceptance, rejection, and non-commitment. The proposed approach is tested on various standard datasets for verification and validation purposes. Results on the basis of these datasets demonstrate that the proposed approach outperforms classical spectral clustering by an average of 30%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ZYF发布了新的文献求助10
刚刚
XUAN发布了新的文献求助10
1秒前
zhou发布了新的文献求助10
1秒前
SciGPT应助Cici采纳,获得10
1秒前
Alay发布了新的文献求助10
2秒前
烟花应助leeteukxx采纳,获得10
3秒前
蓑衣客完成签到,获得积分10
4秒前
4秒前
5秒前
Shawn完成签到,获得积分10
5秒前
lzc发布了新的文献求助10
5秒前
6秒前
6秒前
6秒前
6秒前
浮游应助小竹采纳,获得10
7秒前
7秒前
无花果应助Kannan采纳,获得10
7秒前
8秒前
娃哈哈发布了新的文献求助10
9秒前
陈富贵发布了新的文献求助30
9秒前
浮游应助无私的以云采纳,获得10
9秒前
ymxlcfc发布了新的文献求助10
9秒前
9秒前
学术cheems完成签到,获得积分10
10秒前
小蘑菇应助和功耗过高采纳,获得10
11秒前
Pendragon完成签到,获得积分10
12秒前
12秒前
科研通AI2S应助雷家采纳,获得10
12秒前
许七安完成签到 ,获得积分10
12秒前
无限亦竹发布了新的文献求助10
12秒前
12秒前
健壮的凉面完成签到,获得积分10
13秒前
14秒前
传奇3应助zhou采纳,获得10
14秒前
小蘑菇应助Limengyao采纳,获得10
14秒前
15秒前
15秒前
15秒前
hhhh_xt发布了新的文献求助10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
A Half Century of the Sonogashira Reaction 1000
Artificial Intelligence driven Materials Design 600
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 600
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5183642
求助须知:如何正确求助?哪些是违规求助? 4369861
关于积分的说明 13607883
捐赠科研通 4221715
什么是DOI,文献DOI怎么找? 2315442
邀请新用户注册赠送积分活动 1314022
关于科研通互助平台的介绍 1262893