Improved spectral clustering using three-way decisions

光谱聚类 聚类分析 计算机科学 离群值 代表(政治) 模式识别(心理学) 噪音(视频) 人工智能 相似性(几何) 数据挖掘 相关聚类 数学 图像(数学) 政治学 政治 法学
作者
Shahzad Khan,Omar Khan,Nouman Azam,Ihsan Ullah
出处
期刊:Information Sciences [Elsevier BV]
卷期号:641: 119113-119113 被引量:8
标识
DOI:10.1016/j.ins.2023.119113
摘要

Spectral clustering is an unsupervised machine learning algorithm that groups similar data points into clusters. The method generally works by modeling pair-wise data points as input similarity matrices, and then performs their eigen-decomposition. Clustering is then carried out from this high-dimensional representation by utilizing spectral properties. Here, several eigen-points are mapped and merged to a lower dimensional sub-space iteratively. In contrast to traditional methods, spectral clustering is well poised to solve problems involving complex patterns. However, the approach is sensitive to outliers, measurement errors, or perturbations in the original data. These then appear in the form of increased levels of spectral noise, especially in the higher ordered eigen-vectors. Consequently, the application of pre-processing and noise reduction techniques are important for its performance. In this article, we address this issue by introducing a three-way decision based approach to spectral clustering in order to make it insensitive to noise. Three-way decisions are classically applied to problems involving uncertainty and follow a ternary classification system involving actions of acceptance, rejection, and non-commitment. The proposed approach is tested on various standard datasets for verification and validation purposes. Results on the basis of these datasets demonstrate that the proposed approach outperforms classical spectral clustering by an average of 30%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
美味的屑狐狸关注了科研通微信公众号
刚刚
夏硕完成签到,获得积分10
刚刚
刚刚
燕荣完成签到 ,获得积分10
刚刚
darqin完成签到,获得积分10
1秒前
z1mbo完成签到,获得积分10
1秒前
1秒前
2秒前
端庄的紫发布了新的文献求助30
2秒前
4秒前
涵絮发布了新的文献求助10
5秒前
5秒前
6秒前
李健应助风清扬采纳,获得10
6秒前
Bella发布了新的文献求助10
7秒前
Rheanna完成签到,获得积分10
7秒前
qingyu_Lin123完成签到,获得积分20
8秒前
VDC发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助50
11秒前
11秒前
12秒前
pamela发布了新的文献求助10
12秒前
李西瓜关注了科研通微信公众号
13秒前
14秒前
15秒前
jagger发布了新的文献求助40
17秒前
小贤发布了新的文献求助10
19秒前
19秒前
19秒前
19秒前
20秒前
量子星尘发布了新的文献求助10
21秒前
优美的飞烟完成签到 ,获得积分20
22秒前
dhushuh发布了新的文献求助10
22秒前
205发布了新的文献求助30
22秒前
Sky我的小清新完成签到,获得积分10
23秒前
kiterunner完成签到,获得积分10
23秒前
小巧风华发布了新的文献求助10
23秒前
23秒前
VDC举报昼夜本色求助涉嫌违规
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4601699
求助须知:如何正确求助?哪些是违规求助? 4011262
关于积分的说明 12418861
捐赠科研通 3691306
什么是DOI,文献DOI怎么找? 2035016
邀请新用户注册赠送积分活动 1068302
科研通“疑难数据库(出版商)”最低求助积分说明 952792