Improved spectral clustering using three-way decisions

光谱聚类 聚类分析 计算机科学 离群值 代表(政治) 模式识别(心理学) 噪音(视频) 人工智能 相似性(几何) 数据挖掘 相关聚类 数学 图像(数学) 政治学 政治 法学
作者
Shahzad Khan,Omar Khan,Nouman Azam,Ihsan Ullah
出处
期刊:Information Sciences [Elsevier BV]
卷期号:641: 119113-119113 被引量:8
标识
DOI:10.1016/j.ins.2023.119113
摘要

Spectral clustering is an unsupervised machine learning algorithm that groups similar data points into clusters. The method generally works by modeling pair-wise data points as input similarity matrices, and then performs their eigen-decomposition. Clustering is then carried out from this high-dimensional representation by utilizing spectral properties. Here, several eigen-points are mapped and merged to a lower dimensional sub-space iteratively. In contrast to traditional methods, spectral clustering is well poised to solve problems involving complex patterns. However, the approach is sensitive to outliers, measurement errors, or perturbations in the original data. These then appear in the form of increased levels of spectral noise, especially in the higher ordered eigen-vectors. Consequently, the application of pre-processing and noise reduction techniques are important for its performance. In this article, we address this issue by introducing a three-way decision based approach to spectral clustering in order to make it insensitive to noise. Three-way decisions are classically applied to problems involving uncertainty and follow a ternary classification system involving actions of acceptance, rejection, and non-commitment. The proposed approach is tested on various standard datasets for verification and validation purposes. Results on the basis of these datasets demonstrate that the proposed approach outperforms classical spectral clustering by an average of 30%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
执着的采枫发布了新的文献求助100
1秒前
研友_VZG7GZ应助研友_2484采纳,获得10
2秒前
合适的海安完成签到,获得积分10
2秒前
3秒前
qwer完成签到,获得积分20
3秒前
chen7777发布了新的文献求助10
3秒前
4秒前
star应助小居采纳,获得10
4秒前
Akim应助Yu采纳,获得10
4秒前
暗中讨饭完成签到,获得积分10
5秒前
5秒前
5秒前
5秒前
诚心太君完成签到,获得积分10
5秒前
我是老大应助书蔬鱼猪采纳,获得10
6秒前
7秒前
bafang发布了新的文献求助10
7秒前
7秒前
King16发布了新的文献求助10
8秒前
风和日丽发布了新的文献求助10
9秒前
9秒前
平常完成签到,获得积分10
9秒前
9秒前
米米完成签到 ,获得积分10
10秒前
浮游应助wyblobin采纳,获得10
10秒前
10秒前
修仙中应助cijing采纳,获得10
11秒前
tjr8910发布了新的文献求助10
11秒前
上官若男应助JK采纳,获得10
11秒前
lkl完成签到,获得积分10
11秒前
小杭76应助熊子文采纳,获得10
12秒前
斯文败类应助婷婷采纳,获得10
12秒前
热心的飞兰完成签到,获得积分20
12秒前
Hello应助哈哈哈采纳,获得10
13秒前
13秒前
14秒前
二三发布了新的文献求助10
14秒前
xf应助qq大魔王采纳,获得10
14秒前
lkl发布了新的文献求助10
14秒前
传奇3应助鲨鱼鳍采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Constitutional and Administrative Law 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5264178
求助须知:如何正确求助?哪些是违规求助? 4424447
关于积分的说明 13773074
捐赠科研通 4299589
什么是DOI,文献DOI怎么找? 2359124
邀请新用户注册赠送积分活动 1355370
关于科研通互助平台的介绍 1316708