已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

DCI-PGCN: Dual-Channel Interaction Portable Graph Convolutional Network for Landslide Detection

计算机科学 山崩 图形 对偶(语法数字) 遥感 理论计算机科学 地质学 艺术 文学类 岩土工程
作者
Weiming Li,Yibin Fu,Shuaishuai Fan,Mingrui Xin,Hongyang Bai
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-16 被引量:15
标识
DOI:10.1109/tgrs.2023.3273623
摘要

Landslide, a kind of destructive natural disaster, often occurs in the mountainous areas of China. Landslide information instant collection plays an important role in taking appropriate remedial measures and personnel evacuation. In recent years, the use of Convolutional Neural Network (CNN) for landslide regional detection achieved good performance, however, most CNN-based methods had no regard for the internal connection of the cover materials in the disaster occurrence area. Moreover, the information revealed by the internal deformation features was ignored, and the same surface object in the image presents different features under different illumination, environment and resolution, which makes it difficult to extract the structural features of landslide images. In this paper, we propose a novel graph convolutional network for landslide detection, inspired by attention mechanism's ability to focus on selective information supplemented with both different channels. The global maximum node connection strategy with positive and negative connectivity makes the Graph Convolution Network (GCN) more portable, which is used as the basic unit of graph feature propagation to construct a multi-layer residual connection module. In order to learn interactively and spread graph information, channel dimension is added to make the boundary of features between classes more discriminative. Extensive experiments on Sichuan province and Bijie landslide datasets show that our proposed method outperforms other detection models and achieves high precision and accuracy. In addition, we also carried out landslide detection for Zhaotong of Yunnan Province on GF-2 original images to prove the effectiveness and applicability of the algorithm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
英俊的铭应助XXHH采纳,获得10
1秒前
焉识完成签到,获得积分20
2秒前
虚掩的门发布了新的文献求助10
2秒前
zc完成签到,获得积分10
5秒前
吉吉完成签到 ,获得积分10
5秒前
今后应助G_Ggo采纳,获得10
7秒前
8秒前
阵痛完成签到 ,获得积分10
12秒前
12秒前
小丸子发布了新的文献求助10
13秒前
im红牛完成签到 ,获得积分10
17秒前
研友_MLJWvn完成签到 ,获得积分10
17秒前
22秒前
23秒前
菜头完成签到 ,获得积分10
24秒前
24秒前
24秒前
26秒前
yungzhi发布了新的文献求助30
27秒前
大智若愚骨头完成签到,获得积分10
27秒前
完美世界应助LeiX采纳,获得10
28秒前
开心采白发布了新的文献求助10
28秒前
星空完成签到 ,获得积分10
29秒前
yvaine发布了新的文献求助10
29秒前
直率奇迹完成签到 ,获得积分10
30秒前
学术通zzz发布了新的文献求助10
31秒前
科研牛牛完成签到 ,获得积分10
33秒前
35秒前
Neon完成签到,获得积分10
36秒前
Lucas应助CFJ采纳,获得10
36秒前
36秒前
默默碧空完成签到,获得积分10
37秒前
38秒前
NexusExplorer应助yvaine采纳,获得10
38秒前
39秒前
苏silence发布了新的文献求助10
39秒前
CodeCraft应助虚掩的门采纳,获得10
42秒前
lesyeuxdexx发布了新的文献求助10
42秒前
42秒前
高分求助中
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
Politiek-Politioneele Overzichten van Nederlandsch-Indië. Bronnenpublicatie, Deel II 1929-1930 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3819744
求助须知:如何正确求助?哪些是违规求助? 3362685
关于积分的说明 10418211
捐赠科研通 3080890
什么是DOI,文献DOI怎么找? 1694889
邀请新用户注册赠送积分活动 814781
科研通“疑难数据库(出版商)”最低求助积分说明 768482