Unsupervised anomaly localization in high-resolution breast scans using deep pluralistic image completion

人工智能 计算机科学 推论 异常检测 公制(单位) 模式识别(心理学) 任务(项目管理) 异常(物理) 深度学习 机器学习 图像(数学) 嵌入 计算机视觉 运营管理 物理 管理 凝聚态物理 经济
作者
Nicholas Konz,Haoyu Dong,Maciej A. Mazurowski
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:87: 102836-102836
标识
DOI:10.1016/j.media.2023.102836
摘要

Automated tumor detection in Digital Breast Tomosynthesis (DBT) is a difficult task due to natural tumor rarity, breast tissue variability, and high resolution. Given the scarcity of abnormal images and the abundance of normal images for this problem, an anomaly detection/localization approach could be well-suited. However, most anomaly localization research in machine learning focuses on non-medical datasets, and we find that these methods fall short when adapted to medical imaging datasets. The problem is alleviated when we solve the task from the image completion perspective, in which the presence of anomalies can be indicated by a discrepancy between the original appearance and its auto-completion conditioned on the surroundings. However, there are often many valid normal completions given the same surroundings, especially in the DBT dataset, making this evaluation criterion less precise. To address such an issue, we consider pluralistic image completion by exploring the distribution of possible completions instead of generating fixed predictions. This is achieved through our novel application of spatial dropout on the completion network during inference time only, which requires no additional training cost and is effective at generating diverse completions. We further propose minimum completion distance (MCD), a new metric for detecting anomalies, thanks to these stochastic completions. We provide theoretical as well as empirical support for the superiority over existing methods of using the proposed method for anomaly localization. On the DBT dataset, our model outperforms other state-of-the-art methods by at least 10% AUROC for pixel-level detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
十个qin天发布了新的文献求助10
刚刚
刚刚
3秒前
小元发布了新的文献求助10
4秒前
5秒前
orixero应助ylky采纳,获得20
5秒前
Memory发布了新的文献求助10
5秒前
Hello应助6633采纳,获得10
6秒前
6秒前
科研通AI5应助十个qin天采纳,获得10
7秒前
dennisysz发布了新的文献求助10
8秒前
CH发布了新的文献求助10
10秒前
zhaoxiao完成签到 ,获得积分10
11秒前
ssgtt发布了新的文献求助10
12秒前
FF完成签到 ,获得积分10
14秒前
zq1992nl完成签到,获得积分10
18秒前
开放芝麻关注了科研通微信公众号
19秒前
JamesPei应助科研通管家采纳,获得10
22秒前
科研通AI2S应助科研通管家采纳,获得10
22秒前
科研通AI5应助科研通管家采纳,获得10
22秒前
科研通AI2S应助科研通管家采纳,获得10
22秒前
22秒前
汉堡包应助科研通管家采纳,获得10
22秒前
Jasper应助科研通管家采纳,获得10
23秒前
夕诙应助科研通管家采纳,获得10
23秒前
李健应助科研通管家采纳,获得10
23秒前
23秒前
英姑应助科研通管家采纳,获得10
23秒前
23秒前
23秒前
大模型应助科研通管家采纳,获得10
23秒前
orixero应助机智楼房采纳,获得10
24秒前
淡定草丛完成签到 ,获得积分10
24秒前
深情未来完成签到,获得积分10
27秒前
28秒前
TengDa发布了新的文献求助10
32秒前
Xxxuan发布了新的文献求助10
37秒前
mia005完成签到,获得积分10
41秒前
likey完成签到,获得积分10
41秒前
Silverexile完成签到,获得积分10
43秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777369
求助须知:如何正确求助?哪些是违规求助? 3322759
关于积分的说明 10211549
捐赠科研通 3038120
什么是DOI,文献DOI怎么找? 1667117
邀请新用户注册赠送积分活动 797971
科研通“疑难数据库(出版商)”最低求助积分说明 758103