Interpretable Machine Learning for Fall Prediction Among Older Adults in China

防坠落 逻辑回归 老年学 预测建模 日常生活活动 医学 伤害预防 毒物控制 心理干预 自杀预防 接收机工作特性 职业安全与健康 坠落(事故) 人口学 机器学习 环境卫生 物理疗法 计算机科学 精神科 病理 社会学
作者
Xiaodong Chen,Lingxiao He,Kewei Shi,Yafei Wu,Shaowu Lin,Ya Fang
出处
期刊:American Journal of Preventive Medicine [Elsevier BV]
卷期号:65 (4): 579-586 被引量:24
标识
DOI:10.1016/j.amepre.2023.04.006
摘要

Falls in older adults are potentially devastating, whereas an accurate fall risk prediction model for community-dwelling older Chinese is still lacking. The objective of this study was to build prediction models for falls and fall-related injuries among community-dwelling older adults in China.This study used data (Waves 2015 and 2018) from 5,818 participants from the China Health and Retirement Longitudinal Study. A total of 107 input variables at the baseline level were regarded as candidate features. Five machine learning algorithms were used to build the 3-year fall and fall-related injury risk prediction models. SHapley Additive exPlanations was used for the prediction model explanation. Analyses were conducted in 2022.The logistic regression model achieved the best performance among fall and fall-related injury prediction models with an area under the receiver operating characteristic curve of 0.739 and 0.757, respectively. Experience of falling was the most important feature in both models. Other important features included basic activity of daily living, instrumental activity of daily living, depressive symptoms, house tidiness, grip strength, and sleep duration. The important features unique to the fall model were house temperature, sex, and flush toilets, whereas lung function, smoking, and Internet access were exclusively related to the fall-related injury model.This study suggests that the optimal models hold promise for screening out older adults at high risk for falls in facilitated targeted interventions. Fall prevention strategies should specifically focus on fall history, physical functions, psychological factors, and home environment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
JY发布了新的文献求助30
2秒前
2秒前
2秒前
务实思卉发布了新的文献求助10
2秒前
科研通AI5应助漂亮的笑柳采纳,获得10
3秒前
林祥胜发布了新的文献求助10
3秒前
丘比特应助沐沐采纳,获得10
4秒前
qwq发布了新的文献求助10
4秒前
羽客完成签到,获得积分10
5秒前
5秒前
虚幻的岱周完成签到 ,获得积分10
6秒前
6秒前
6秒前
超开心完成签到,获得积分10
7秒前
7秒前
阿辉发布了新的文献求助10
8秒前
没必要之崔完成签到,获得积分20
8秒前
9秒前
9秒前
9秒前
9秒前
10秒前
不要加糖发布了新的文献求助10
10秒前
Asteria发布了新的文献求助10
10秒前
cpxliteratur完成签到,获得积分10
11秒前
11秒前
充电宝应助zn采纳,获得10
11秒前
wanci应助超开心采纳,获得10
11秒前
思源应助Moon采纳,获得10
12秒前
12秒前
Muttu完成签到,获得积分10
12秒前
科研通AI5应助葛辉辉采纳,获得10
12秒前
善学以致用应助六个核桃采纳,获得10
13秒前
13秒前
14秒前
14秒前
xuanxuan2014发布了新的文献求助10
14秒前
杭州007发布了新的文献求助10
15秒前
15秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
Refractory Castable Engineering 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5206341
求助须知:如何正确求助?哪些是违规求助? 4384805
关于积分的说明 13654605
捐赠科研通 4243073
什么是DOI,文献DOI怎么找? 2327875
邀请新用户注册赠送积分活动 1325614
关于科研通互助平台的介绍 1277710