Interpretable Machine Learning for Fall Prediction Among Older Adults in China

防坠落 逻辑回归 老年学 预测建模 日常生活活动 医学 伤害预防 毒物控制 心理干预 自杀预防 接收机工作特性 职业安全与健康 坠落(事故) 人口学 机器学习 环境卫生 物理疗法 计算机科学 精神科 病理 社会学
作者
Xiaodong Chen,Lingxiao He,Kewei Shi,Yafei Wu,Shaowu Lin,Ya Fang
出处
期刊:American Journal of Preventive Medicine [Elsevier BV]
卷期号:65 (4): 579-586 被引量:17
标识
DOI:10.1016/j.amepre.2023.04.006
摘要

Falls in older adults are potentially devastating, whereas an accurate fall risk prediction model for community-dwelling older Chinese is still lacking. The objective of this study was to build prediction models for falls and fall-related injuries among community-dwelling older adults in China.This study used data (Waves 2015 and 2018) from 5,818 participants from the China Health and Retirement Longitudinal Study. A total of 107 input variables at the baseline level were regarded as candidate features. Five machine learning algorithms were used to build the 3-year fall and fall-related injury risk prediction models. SHapley Additive exPlanations was used for the prediction model explanation. Analyses were conducted in 2022.The logistic regression model achieved the best performance among fall and fall-related injury prediction models with an area under the receiver operating characteristic curve of 0.739 and 0.757, respectively. Experience of falling was the most important feature in both models. Other important features included basic activity of daily living, instrumental activity of daily living, depressive symptoms, house tidiness, grip strength, and sleep duration. The important features unique to the fall model were house temperature, sex, and flush toilets, whereas lung function, smoking, and Internet access were exclusively related to the fall-related injury model.This study suggests that the optimal models hold promise for screening out older adults at high risk for falls in facilitated targeted interventions. Fall prevention strategies should specifically focus on fall history, physical functions, psychological factors, and home environment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
2秒前
无奈的小馒头完成签到,获得积分20
3秒前
CXC发布了新的文献求助10
4秒前
HuY发布了新的文献求助10
5秒前
科研通AI5应助Nelson采纳,获得10
5秒前
852应助热情平凡采纳,获得10
6秒前
邹米文完成签到,获得积分10
6秒前
Masongyang完成签到 ,获得积分10
6秒前
8秒前
淡定的酬海完成签到,获得积分10
9秒前
Hello应助神勇冷安采纳,获得10
9秒前
13秒前
14秒前
14秒前
大个应助李鑫鑫采纳,获得10
16秒前
赘婿应助李鑫鑫采纳,获得10
16秒前
hiccup发布了新的文献求助10
18秒前
淡淡宛完成签到 ,获得积分10
21秒前
MOMO完成签到 ,获得积分10
21秒前
愉快谷芹完成签到 ,获得积分10
21秒前
转山转水转出了自我完成签到,获得积分10
21秒前
22秒前
学渣一枚完成签到 ,获得积分10
24秒前
24秒前
25秒前
26秒前
研友_8Y26PL发布了新的文献求助10
27秒前
典雅葶完成签到 ,获得积分10
28秒前
wy.he应助零零采纳,获得10
28秒前
老张头秃了完成签到,获得积分10
29秒前
xxy关注了科研通微信公众号
29秒前
hiccup完成签到,获得积分10
29秒前
李海涵发布了新的文献求助10
30秒前
蒙德迪卢克完成签到,获得积分10
32秒前
慕青应助酷酷的砖家采纳,获得10
33秒前
yyh123完成签到,获得积分10
34秒前
ttsgs123完成签到,获得积分10
34秒前
34秒前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
E-commerce live streaming impact analysis based on stimulus-organism response theory 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801550
求助须知:如何正确求助?哪些是违规求助? 3347251
关于积分的说明 10332856
捐赠科研通 3063516
什么是DOI,文献DOI怎么找? 1681821
邀请新用户注册赠送积分活动 807754
科研通“疑难数据库(出版商)”最低求助积分说明 763867