清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Geometric information constraint 3D object detection from LiDAR point cloud for autonomous vehicles under adverse weather

激光雷达 点云 约束(计算机辅助设计) 恶劣天气 云计算 计算机科学 对象(语法) 点(几何) 气象学 计算机视觉 环境科学 遥感 人工智能 地理 数学 几何学 操作系统
作者
Yuanfan Qi,Chun Liu,Marco Scaioni,Yanyi Li,Yihong Qiao,Xiaolong Ma,Hangbin Wu,Keke Zhang,Dazhi Wang
出处
期刊:Transportation Research Part C-emerging Technologies [Elsevier]
卷期号:161: 104555-104555 被引量:18
标识
DOI:10.1016/j.trc.2024.104555
摘要

3D object detection, as the core of the autonomous vehicle perception module, is essential for efficient transportation and comfortable experiences. However, the challenge of 3D object detection under adverse weather conditions hinders the advancement of autonomous vehicles to higher levels. Hence, achieving accurate 3D object detection under adverse weather conditions is increasingly crucial as it forms the foundation for trajectory planning and driving strategy making in autonomous vehicles, thereby revolutionizing transportation modes for both goods and passengers. Advances in Light Detection and Ranging (LiDAR) technology have facilitated the development of 3D object detection in the past few years. Adverse weather, which inevitably occurs in real-world driving scenarios, could degrade measurement accuracy and point density of LiDAR and lead to particle interference. Detecting accurate 3D bounding boxes from sparse, incomplete point clouds with particle interference is difficult. Therefore, this research presents a novel geometric information constraint network for 3D object detection tasks from LiDAR point clouds under adverse weather (GIC-Net). In this study, we focus on how to incorporate geometric location information and line geometric feature information into the network against adverse weather. Further, we propose a geometric location constrained backbone module (GLC) to reduce rain and snow particle interference and ensure sufficient receptive fields. Then, we design a line geometric feature constraint module (LGFC) to add line constraints of 3D bounding boxes into the training process. Finally, a line loss function is designed, and features from the GLC and LGFC modules are fed into the multi-task detection head for accurate 3D bounding box prediction. Experiments on the Canadian Adverse Driving Conditions (CADC) autonomous vehicle dataset demonstrate the superiority of our method over six other state-of-the-art methods under adverse weather, which is at least 13.32 %, 4.67 %, and 10.44 % mAP higher than the other compared methods in the car, truck, and pedestrian classes respectively. Also, we further verify the better generalization ability of our network compared to other methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浮游应助chichi采纳,获得10
刚刚
7秒前
charih完成签到 ,获得积分10
11秒前
和谐的夏岚完成签到 ,获得积分10
25秒前
29秒前
CadoreK完成签到 ,获得积分10
31秒前
33秒前
wanghao完成签到 ,获得积分10
40秒前
丘比特应助科研通管家采纳,获得10
43秒前
今后应助科研通管家采纳,获得10
43秒前
曾珍完成签到 ,获得积分10
45秒前
yxdjzwx完成签到,获得积分10
1分钟前
1分钟前
theo完成签到 ,获得积分10
1分钟前
无奈完成签到 ,获得积分10
1分钟前
1分钟前
Zhangfu完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
lingling完成签到 ,获得积分10
2分钟前
cwanglh完成签到 ,获得积分10
2分钟前
sci完成签到 ,获得积分10
2分钟前
2分钟前
沉沉完成签到 ,获得积分0
2分钟前
2分钟前
鱼鱼鱼鱼完成签到 ,获得积分10
2分钟前
无花果应助科研通管家采纳,获得10
2分钟前
chcmy完成签到 ,获得积分0
2分钟前
忧伤的摩托完成签到,获得积分20
3分钟前
xmhxpz完成签到,获得积分10
3分钟前
领导范儿应助忧伤的摩托采纳,获得10
3分钟前
3分钟前
3分钟前
Nancy完成签到 ,获得积分10
3分钟前
Hong完成签到 ,获得积分10
3分钟前
Matberry完成签到 ,获得积分10
3分钟前
charih完成签到 ,获得积分10
4分钟前
蓝意完成签到,获得积分0
4分钟前
tingalan完成签到,获得积分0
4分钟前
回首不再是少年完成签到,获得积分0
4分钟前
隐形听双完成签到 ,获得积分10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5482602
求助须知:如何正确求助?哪些是违规求助? 4583348
关于积分的说明 14389217
捐赠科研通 4512509
什么是DOI,文献DOI怎么找? 2473013
邀请新用户注册赠送积分活动 1459195
关于科研通互助平台的介绍 1432729