CloudFU-Net: A Fine-Grained Segmentation Method for Ground-Based Cloud Images Based on an Improved Encoder–Decoder Structure

计算机科学 分割 编码器 增采样 图像分割 遥感 核(代数) 人工智能 计算机视觉 云计算 基本事实 地质学 图像(数学) 数学 操作系统 组合数学
作者
Chaojun Shi,Zibo Su,Ke Zhang,Xiongbin Xie,Xian Zheng,Qiaochu Lu,Jiyuan Yang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-13 被引量:2
标识
DOI:10.1109/tgrs.2024.3389089
摘要

The segmentation of ground-based cloud image is a crucial aspect of ground-based cloud observation, with significant implications for meteorological forecasting, photovoltaic power prediction, and other related tasks. At present, the proposed method of ground-based cloud image segmentation only separates cloud from the sky background without further classifying the cloud categories. Clouds have rich fine-grained semantic features, and different types of clouds have different effects on solar irradiance, which in turn has different effects on photovoltaic power. In this paper, a fine-grained segmentation method for ground-based cloud images is proposed, which is based on an improved encoder-decoder structure named CloudFU-Net. Firstly, a ground-based cloud image fine-grained segmentation data set for Photovoltaic power prediction is constructed, and the clouds are divided into five categories with different colors under the guidance of meteorologists; Secondly, Selective Kernel (SK) is introduced in CloudFU-Net encoder to better capture cloud of different sizes. Then, Parallel dilated convolution model (PDCM) is proposed to segment small target clouds more accurately. Finally, a Content-Aware ReAssembly of Features(CARAFE) is introduced into CloudFU-Net decoder to replace the original interpolating upsampling to better recover fine-grained semantic features. Lastly, the experimental results show that the proposed CloudFU-Net has the best segmentation performance compared with other segmentation models, with Miou reaching 61.9%, which can efficiently segment different cloud genera and lay a solid foundation for accurate prediction of photovoltaic power.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
杨怂怂发布了新的文献求助10
1秒前
朴素幼晴发布了新的文献求助20
2秒前
韦老虎发布了新的文献求助30
4秒前
机智灵薇完成签到,获得积分10
4秒前
lzd完成签到,获得积分10
7秒前
思源应助乘风破浪采纳,获得10
8秒前
柏林发布了新的文献求助10
8秒前
lin发布了新的文献求助20
9秒前
gelinhao完成签到,获得积分10
11秒前
12秒前
yummy完成签到,获得积分10
12秒前
科研通AI5应助ewmmel采纳,获得10
14秒前
111发布了新的文献求助10
17秒前
形随将至发布了新的文献求助10
18秒前
一一应助柏林采纳,获得10
18秒前
小蘑菇应助令狐远航采纳,获得10
20秒前
21秒前
不会失忆完成签到,获得积分10
23秒前
24秒前
25秒前
朴素幼晴完成签到,获得积分10
25秒前
26秒前
yk123发布了新的文献求助10
26秒前
28秒前
飞云发布了新的文献求助10
28秒前
骆其为清发布了新的文献求助10
29秒前
31秒前
令狐远航完成签到,获得积分10
33秒前
yk123完成签到,获得积分10
33秒前
令狐远航发布了新的文献求助10
35秒前
不会学术的羊完成签到,获得积分10
36秒前
芜湖完成签到,获得积分10
39秒前
39秒前
南冥完成签到 ,获得积分10
40秒前
41秒前
可行完成签到,获得积分10
42秒前
乘风破浪发布了新的文献求助10
42秒前
希望天下0贩的0应助xmxm采纳,获得10
43秒前
DaLi123发布了新的文献求助10
45秒前
ewmmel发布了新的文献求助10
46秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Preparative Methods of Polymer Chemistry, 3rd Edition 200
The Oxford Handbook of Chinese Philosophy 200
New Syntheses with Carbon Monoxide 200
Quanterion Automated Databook NPRD-2023 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3834960
求助须知:如何正确求助?哪些是违规求助? 3377456
关于积分的说明 10498597
捐赠科研通 3096925
什么是DOI,文献DOI怎么找? 1705320
邀请新用户注册赠送积分活动 820529
科研通“疑难数据库(出版商)”最低求助积分说明 772110