Road Extraction from Remote Sensing Imagery with Spatial Attention Based on Swin Transformer

遥感 计算机科学 人工智能 地理
作者
Xianhong Zhu,Xiaohui Huang,Weijia Cao,Xiaofei Yang,Yunfei Zhou,Shaokai Wang
出处
期刊:Remote Sensing [Multidisciplinary Digital Publishing Institute]
卷期号:16 (7): 1183-1183 被引量:4
标识
DOI:10.3390/rs16071183
摘要

Road extraction is a crucial aspect of remote sensing imagery processing that plays a significant role in various remote sensing applications, including automatic driving, urban planning, and path navigation. However, accurate road extraction is a challenging task due to factors such as high road density, building occlusion, and complex traffic environments. In this study, a Spatial Attention Swin Transformer (SASwin Transformer) architecture is proposed to create a robust encoder capable of extracting roads from remote sensing imagery. In this architecture, we have developed a spatial self-attention (SSA) module that captures efficient and rich spatial information through spatial self-attention to reconstruct the feature map. Following this, the module performs residual connections with the input, which helps reduce interference from unrelated regions. Additionally, we designed a Spatial MLP (SMLP) module to aggregate spatial feature information from multiple branches while simultaneously reducing computational complexity. Two public road datasets, the Massachusetts dataset and the DeepGlobe dataset, were used for extensive experiments. The results show that our proposed model has an improved overall performance compared to several state-of-the-art algorithms. In particular, on the two datasets, our model outperforms D-LinkNet with an increase in Intersection over Union (IoU) metrics of 1.88% and 1.84%, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
祝好发布了新的文献求助20
3秒前
emnjkl完成签到,获得积分20
7秒前
冷傲雍完成签到,获得积分20
7秒前
芭娜55完成签到 ,获得积分10
11秒前
12秒前
13秒前
热心的百川完成签到 ,获得积分20
15秒前
丰富又亦完成签到,获得积分10
17秒前
Bblythe完成签到 ,获得积分10
17秒前
19秒前
Akim应助奔波儿灞采纳,获得10
20秒前
NexusExplorer应助硕shuo采纳,获得10
21秒前
AA发布了新的文献求助10
23秒前
july完成签到 ,获得积分10
24秒前
26秒前
丰富又亦发布了新的文献求助10
26秒前
奔波儿灞完成签到,获得积分20
29秒前
32秒前
lant0ng完成签到 ,获得积分10
32秒前
GH发布了新的文献求助10
37秒前
37秒前
泡泡完成签到 ,获得积分10
39秒前
pluto应助木木三采纳,获得20
39秒前
六六完成签到 ,获得积分10
40秒前
41秒前
苏苏苏发布了新的文献求助10
42秒前
谨慎的擎宇完成签到,获得积分10
45秒前
46秒前
47秒前
晏子完成签到,获得积分10
47秒前
河堤完成签到,获得积分10
49秒前
远江丠发布了新的文献求助10
51秒前
陶军辉完成签到 ,获得积分10
51秒前
科目三应助meng采纳,获得10
52秒前
快乐的小央完成签到,获得积分10
56秒前
xiaozheng完成签到,获得积分10
57秒前
夜已深完成签到,获得积分10
1分钟前
1111111111111完成签到,获得积分10
1分钟前
QiWei完成签到 ,获得积分10
1分钟前
Yi发布了新的文献求助10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776730
求助须知:如何正确求助?哪些是违规求助? 3322167
关于积分的说明 10208975
捐赠科研通 3037401
什么是DOI,文献DOI怎么找? 1666647
邀请新用户注册赠送积分活动 797622
科研通“疑难数据库(出版商)”最低求助积分说明 757921