An adaptive consensus model for multi-criteria sorting under linguistic distribution group decision making considering decision-makers’ attitudes

群体决策 分类 计算机科学 决策模型 群(周期表) 分布(数学) 语言学 人工智能 自然语言处理 管理科学 心理学 社会心理学 数学 算法 数学分析 哲学 化学 有机化学 经济
作者
Zhang‐peng Tian,Feifei Xu,Ru‐xin Nie,Xiaokang Wang,Jianqiang Wang
出处
期刊:Information Fusion [Elsevier BV]
卷期号:108: 102406-102406
标识
DOI:10.1016/j.inffus.2024.102406
摘要

Group multiple criteria sorting (MCS) has become a trend in dealing with a variety of practical problems. During the process of managing group MCS, it is critical to reduce conflicts among decision-makers (DMs). Given the key role of DMs' attitudes in affecting consensus level, this study aims to propose a novel consensus-based approach to solve group MCS problems considering DMs' attitudes with flexible expression linguistic distribution assessments (LDAs) that can capture massive DMs' qualitative preferences. To achieve this goal, first, a minimum adjustment-based optimization model is built to guide individuals in revising their preferences, and a maximum assignment interval-based optimization model is constructed to derive consistent and possible assignments of each alternative while maintaining the accuracy levels of the original assignments. An attitudinal consensus index is then defined to measure the group consensus level, by which group DMs' attitudes can be well considered in MCS problems. A sophisticated adaptive feedback adjustment mechanism is also developed and inserted into the consensus model, which provides support for consensus-reaching based on the advantages of both types of adaptive feedback adjustment mechanism strategies. Afterwards, to generate more straightforward and scientific assignment solutions, this study proposes a minimum information loss-based optimization model to identify the final categories of each alternative. Finally, an illustrative example for evaluating livable cities, followed by sensitivity and comparative analyses, is presented to demonstrate the applicability and advantages of the proposed MCS approach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
伶俐如冰发布了新的文献求助10
1秒前
易海之旅发布了新的文献求助10
1秒前
日出发布了新的文献求助10
2秒前
2秒前
雨天发布了新的文献求助20
3秒前
从前的我完成签到 ,获得积分10
4秒前
maguodrgon应助自然剑采纳,获得10
4秒前
yqf发布了新的文献求助10
5秒前
Zyd完成签到,获得积分10
7秒前
10秒前
yqf完成签到,获得积分0
13秒前
yinshan完成签到 ,获得积分10
14秒前
科研通AI2S应助满意的世界采纳,获得10
16秒前
爆米花应助Yellue采纳,获得10
17秒前
科研菜鱼发布了新的文献求助10
17秒前
天涯完成签到 ,获得积分10
20秒前
完美世界应助申熙辰采纳,获得30
21秒前
21秒前
Singularity应助王香香采纳,获得10
21秒前
科研菜鱼完成签到,获得积分10
25秒前
25秒前
汉堡包应助科研通管家采纳,获得10
25秒前
酷波er应助科研通管家采纳,获得10
26秒前
汉堡包应助科研通管家采纳,获得10
26秒前
英俊的铭应助科研通管家采纳,获得10
26秒前
Ava应助科研通管家采纳,获得10
26秒前
欣欣发布了新的文献求助10
26秒前
wanci应助科研通管家采纳,获得10
26秒前
斯文败类应助科研通管家采纳,获得10
26秒前
田様应助科研通管家采纳,获得10
26秒前
26秒前
26秒前
26秒前
酷酷寄松关注了科研通微信公众号
30秒前
鹏gg完成签到 ,获得积分10
31秒前
所所应助和春住采纳,获得10
31秒前
36秒前
hiipaige完成签到,获得积分10
41秒前
lihuahui发布了新的文献求助10
41秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Understanding Global Migration 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965327
求助须知:如何正确求助?哪些是违规求助? 3510663
关于积分的说明 11154407
捐赠科研通 3244991
什么是DOI,文献DOI怎么找? 1792739
邀请新用户注册赠送积分活动 874026
科研通“疑难数据库(出版商)”最低求助积分说明 804150