亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multi-model fusion stacking ensemble learning method for the prediction of berberine by FT-NIR spectroscopy

阿达布思 Boosting(机器学习) 集成学习 随机森林 梯度升压 机器学习 计算机科学 模式识别(心理学) 人工智能 数学 支持向量机
作者
Xiaoyu Li,Huazhou Chen,Lili Xu,Qiushuang Mo,Xinrong Du,Guoqiang Tang
出处
期刊:Infrared Physics & Technology [Elsevier BV]
卷期号:137: 105169-105169 被引量:14
标识
DOI:10.1016/j.infrared.2024.105169
摘要

Rhizoma Coptidis is a Chinese herbal medicine with antibacterial and anti-inflammatory properties. It has extensive applications in modern medicine. The content of berberine in Rhizoma Coptidis directly determines its quality. Fourier transforms near-infrared (FT-NIR) spectroscopy is a commonly used non-destructive method for rapidly detecting berberine content. In contrast to single-supervised learning algorithms in machine learning, ensemble learning combines individual learning algorithms to create a stable and better-performing strong-supervised model. This study collected spectral data of Rhizoma Coptidis using FT-NIR spectroscopy technology and established a chemometric model using a stacking ensemble approach with multiple models. Partial Least Squares (PLS), Adaptive Boosting (AdaBoost), Gradient boosting decision trees (GBDT), random forest (RF), and extreme gradient boosting (XGBoost) regression models were chosen as alternative base models, different Stacking models were established by random combinations. To fully leverage the strengths of each model and enhance predictive capability, an adaptive inertia weight particle swarm optimization algorithm (AWPSO) was used to search for the optimal parameters. The correlation coefficient of the test (RT) and the root mean square error of the test (RMSET) systematically evaluated the model performance. Finally, AWPSO-RF, AWPSO-XGBoost, and AWPSO-AdaBoost were selected as the base models. The RMSET and RT for RF, XGBoost, and AdaBoost were 0.226, 0.250, 0.195, and 0.871, 0.830, 0.927. After optimizing with the AWPSO algorithm, the RMSET and RT for AWPSO-RF, AWPSO-XGBoost, and AWPSO-AdaBoost were 0.226, 0.245, 0.194, and 0.871, 0.843, 0.922, respectively. The RMSET and RT values for the stacking ensemble were 0.174 and 0.932. The prediction accuracy and generalization ability of multi-model fusion stacking ensemble learning are superior to the single-model regression methods. Therefore, the stacking ensemble learning method that combines AdaBoost, RF, and XGBoost regression models is effective and feasible for assisting in the detection of berberine content in Rhizoma Coptidis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
15秒前
搜集达人应助科研通管家采纳,获得10
17秒前
善学以致用应助Zzz采纳,获得10
26秒前
orixero应助Zzz采纳,获得10
26秒前
搜集达人应助Zzz采纳,获得10
26秒前
科研通AI2S应助Zzz采纳,获得10
26秒前
嘿嘿应助Zzz采纳,获得10
26秒前
wanci应助Zzz采纳,获得10
26秒前
希望天下0贩的0应助Zzz采纳,获得10
26秒前
充电宝应助Zzz采纳,获得10
26秒前
Owen应助Zzz采纳,获得30
26秒前
Jasper应助Zzz采纳,获得10
26秒前
orixero应助firedouble采纳,获得10
33秒前
牛八先生完成签到,获得积分10
38秒前
zl13332完成签到 ,获得积分10
59秒前
情怀应助秀丽的青采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
firedouble发布了新的文献求助10
1分钟前
酷波er应助科研通管家采纳,获得10
2分钟前
嘿嘿给幽默的南珍的求助进行了留言
2分钟前
2分钟前
2分钟前
firedouble完成签到,获得积分10
2分钟前
3分钟前
yihao应助蘅皋采纳,获得10
3分钟前
上官若男应助TruongThe采纳,获得10
3分钟前
感谢有你完成签到 ,获得积分10
3分钟前
3分钟前
秀丽的青发布了新的文献求助10
4分钟前
研友_VZG7GZ应助秀丽的青采纳,获得10
4分钟前
4分钟前
Ava应助科研通管家采纳,获得10
4分钟前
TruongThe发布了新的文献求助10
4分钟前
nolan完成签到 ,获得积分10
4分钟前
4分钟前
科研通AI2S应助TruongThe采纳,获得10
4分钟前
bkagyin应助Wxj246801采纳,获得10
4分钟前
4分钟前
高分求助中
【请各位用户详细阅读此贴后再求助】科研通的精品贴汇总(请勿应助) 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Maritime Applications of Prolonged Casualty Care: Drowning and Hypothermia on an Amphibious Warship 500
Comparison analysis of Apple face ID in iPad Pro 13” with first use of metasurfaces for diffraction vs. iPhone 16 Pro 500
Towards a $2B optical metasurfaces opportunity by 2029: a cornerstone for augmented reality, an incremental innovation for imaging (YINTR24441) 500
Materials for Green Hydrogen Production 2026-2036: Technologies, Players, Forecasts 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4053721
求助须知:如何正确求助?哪些是违规求助? 3591821
关于积分的说明 11413645
捐赠科研通 3318061
什么是DOI,文献DOI怎么找? 1824921
邀请新用户注册赠送积分活动 896270
科研通“疑难数据库(出版商)”最低求助积分说明 817418