Multi-model fusion stacking ensemble learning method for the prediction of berberine by FT-NIR spectroscopy

阿达布思 Boosting(机器学习) 集成学习 随机森林 梯度升压 机器学习 计算机科学 模式识别(心理学) 人工智能 数学 支持向量机
作者
Xiaoyu Li,Huazhou Chen,Lili Xu,Qiushuang Mo,Xinrong Du,Guoqiang Tang
出处
期刊:Infrared Physics & Technology [Elsevier]
卷期号:137: 105169-105169 被引量:17
标识
DOI:10.1016/j.infrared.2024.105169
摘要

Rhizoma Coptidis is a Chinese herbal medicine with antibacterial and anti-inflammatory properties. It has extensive applications in modern medicine. The content of berberine in Rhizoma Coptidis directly determines its quality. Fourier transforms near-infrared (FT-NIR) spectroscopy is a commonly used non-destructive method for rapidly detecting berberine content. In contrast to single-supervised learning algorithms in machine learning, ensemble learning combines individual learning algorithms to create a stable and better-performing strong-supervised model. This study collected spectral data of Rhizoma Coptidis using FT-NIR spectroscopy technology and established a chemometric model using a stacking ensemble approach with multiple models. Partial Least Squares (PLS), Adaptive Boosting (AdaBoost), Gradient boosting decision trees (GBDT), random forest (RF), and extreme gradient boosting (XGBoost) regression models were chosen as alternative base models, different Stacking models were established by random combinations. To fully leverage the strengths of each model and enhance predictive capability, an adaptive inertia weight particle swarm optimization algorithm (AWPSO) was used to search for the optimal parameters. The correlation coefficient of the test (RT) and the root mean square error of the test (RMSET) systematically evaluated the model performance. Finally, AWPSO-RF, AWPSO-XGBoost, and AWPSO-AdaBoost were selected as the base models. The RMSET and RT for RF, XGBoost, and AdaBoost were 0.226, 0.250, 0.195, and 0.871, 0.830, 0.927. After optimizing with the AWPSO algorithm, the RMSET and RT for AWPSO-RF, AWPSO-XGBoost, and AWPSO-AdaBoost were 0.226, 0.245, 0.194, and 0.871, 0.843, 0.922, respectively. The RMSET and RT values for the stacking ensemble were 0.174 and 0.932. The prediction accuracy and generalization ability of multi-model fusion stacking ensemble learning are superior to the single-model regression methods. Therefore, the stacking ensemble learning method that combines AdaBoost, RF, and XGBoost regression models is effective and feasible for assisting in the detection of berberine content in Rhizoma Coptidis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
微笑的井发布了新的文献求助10
1秒前
T拐拐发布了新的文献求助10
2秒前
Nilstal完成签到,获得积分10
2秒前
2秒前
幽默的棒球完成签到,获得积分10
2秒前
高熵君完成签到,获得积分10
2秒前
落忆完成签到 ,获得积分0
2秒前
研友_MLJldZ发布了新的文献求助10
3秒前
开心半山发布了新的文献求助10
3秒前
free1zhang完成签到,获得积分10
4秒前
科研通AI2S应助111采纳,获得10
4秒前
4秒前
西海小甜豆完成签到,获得积分10
4秒前
机智的思山完成签到,获得积分10
4秒前
星空点点完成签到 ,获得积分10
4秒前
哆啦A梦发布了新的文献求助10
5秒前
科目三应助wsysweet采纳,获得10
5秒前
5秒前
浮华完成签到,获得积分10
6秒前
Lesley完成签到 ,获得积分10
6秒前
高高水发布了新的文献求助10
6秒前
邓晓霞完成签到,获得积分10
6秒前
6秒前
zss完成签到,获得积分10
6秒前
LA排骨完成签到,获得积分10
7秒前
yjq完成签到,获得积分10
7秒前
WiWi发布了新的文献求助30
7秒前
量子星尘发布了新的文献求助10
7秒前
Wang完成签到,获得积分10
10秒前
10秒前
小葵发布了新的文献求助10
10秒前
Misty完成签到,获得积分10
11秒前
无花果应助研友_MLJldZ采纳,获得10
11秒前
桐桐应助guigui采纳,获得10
11秒前
可爱的函函应助Sichen孟采纳,获得10
12秒前
12秒前
科研通AI6应助王曼曼采纳,获得30
13秒前
倪好发布了新的文献求助10
13秒前
14秒前
reading gene完成签到,获得积分10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Machine Learning for Polymer Informatics 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5409878
求助须知:如何正确求助?哪些是违规求助? 4527416
关于积分的说明 14110521
捐赠科研通 4441833
什么是DOI,文献DOI怎么找? 2437651
邀请新用户注册赠送积分活动 1429598
关于科研通互助平台的介绍 1407728