Spatial–Spectral Attention Pyramid Network for Hyperspectral Stripe Restoration

高光谱成像 计算机科学 人工智能 棱锥(几何) 像素 图像分辨率 计算机视觉 空间分析 模式识别(心理学) 失真(音乐) 遥感 地质学 数学 电信 放大器 几何学 带宽(计算)
作者
Liangliang Chen,Yueming Wang,Chengkang Zhang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-17
标识
DOI:10.1109/tgrs.2023.3342189
摘要

Push-broom hyperspectral imaging systems often suffer from stripe artifacts. The conventional methods treat the artifacts as noise and suppress narrow-stripe ones well, but show limitations to wide and full-band stripe artifacts. To address the problem, this paper proposes a spatial-spectral attention pyramid network (SAPN) for hyperspectral stripe restoration. Firstly, the spatial-spectral mixed attention module (SMA) is developed to tackle the inefficiency of neighborhood representation in wide stripes, and it is mainly composed of three spatial and spectral attention (SSA) operations. Each SSA specifically combines channel and non-local attention to compute spatial-spectral attention features. SMA utilizes these SSA operations to achieve different spatial-spectral attention features for multi-directional slices of hyperspectral cubes, and then fuses them to establish the contextual connection between the single pixel and the global information. Further, we build an efficient pyramid backbone (EPB) for stripe restoration. In EPB, multi-resolution shallow pyramid features are extracted by the lightweight head module, and then inferred and reconstructed by SMA and other layers from coarse to fine, the shareable SSA layer also greatly decreases parameters. Besides, we develop an unsupervised learning strategy where SAPN generates pseudo-reference images with the aid of deep image prior, and achieve the convergent model for batch images. Experiments are carried out on the private and public hyperspectral datasets where wide stripes respectively exist at the same and different spatial locations in all bands. Experimental results demonstrate that SAPN can obtain competitive objective metrics, and it can restore images with more realistic texture and fidelity spectra.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
陶醉的大白完成签到 ,获得积分10
3秒前
3秒前
玛斯特尔完成签到,获得积分10
4秒前
5秒前
cc发布了新的文献求助20
5秒前
7秒前
ly完成签到 ,获得积分10
9秒前
Yuna完成签到,获得积分10
9秒前
Wangjingxuan完成签到,获得积分10
9秒前
11秒前
紫罗兰花海完成签到 ,获得积分10
13秒前
14秒前
Ws完成签到,获得积分10
16秒前
cc完成签到,获得积分10
17秒前
Orange应助wuxunxun2015采纳,获得10
18秒前
罗伊黄完成签到 ,获得积分10
20秒前
DDDOG发布了新的文献求助10
22秒前
BZPL完成签到,获得积分10
24秒前
orixero应助碧蓝的曼岚采纳,获得10
25秒前
科研通AI2S应助搞怪的紫易采纳,获得10
25秒前
可靠的白竹完成签到 ,获得积分10
28秒前
沉默寻凝完成签到,获得积分10
30秒前
今天想吃披萨完成签到,获得积分10
32秒前
34秒前
消烦员完成签到,获得积分20
35秒前
彭于晏应助123采纳,获得10
36秒前
37秒前
丰富的不惜完成签到,获得积分10
38秒前
3D完成签到 ,获得积分10
38秒前
39秒前
39秒前
40秒前
40秒前
科研通AI5应助冯昊采纳,获得10
42秒前
43秒前
wuxunxun2015发布了新的文献求助10
44秒前
45秒前
王博士完成签到 ,获得积分10
46秒前
顺心毛巾完成签到,获得积分10
46秒前
48秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Izeltabart tapatansine - AdisInsight 600
Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
Individualized positive end-expiratory pressure in laparoscopic surgery: a randomized controlled trial 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3761742
求助须知:如何正确求助?哪些是违规求助? 3305515
关于积分的说明 10134536
捐赠科研通 3019564
什么是DOI,文献DOI怎么找? 1658216
邀请新用户注册赠送积分活动 791974
科研通“疑难数据库(出版商)”最低求助积分说明 754751