Research on GPU Implementation and Optimization Technology of LoG Edge Extraction Algorithm

计算机科学 萃取(化学) GSM演进的增强数据速率 算法 计算科学 计算机图形学(图像) 化学 人工智能 色谱法
作者
Huikang Tang,Xiao Han,Qinglei Zhou,Cailin Li
出处
期刊:Journal of Imaging Science and Technology [Society for Imaging Science and Technology]
卷期号:68 (1): 1-16
标识
DOI:10.2352/j.imagingsci.technol.2024.68.1.010507
摘要

Edge detection algorithms are widely used in image segmentation, image fusion, computer vision, and other fields. The traditional LoG edge extraction algorithm has limitations, such as slow computing speed, occupying host resources, and so on. In order to overcome these limitations, a parallel algorithm of LoG edge extraction based on OpenCL is designed and implemented. First, the Gaussian filtering and Laplacian differential operation in the LoG algorithm are parallelized, and the parallelism of the LoG algorithm is improved from the algorithm structure. At the same time, the GPU's many-core architecture is used to process each sub-image block in parallel, and each work-item is responsible for one pixel so that the processing objects can be processed in parallel. In addition, strategies such as memory access vectorization, local memory optimization, and resource optimization are adopted to further improve the performance of the kernel. The experimental results show that the parallel optimized LoG algorithm has achieved 21.9 times, 4 times, and 1.09 times speedup compared with the CPU serial algorithm, OpenMP parallel algorithm, and CUDA parallel algorithm, respectively. The feasibility, effectiveness, and portability of the algorithm are verified, and it has good prospects in engineering applications.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
稳定上分完成签到,获得积分10
刚刚
1秒前
CIAO完成签到,获得积分10
2秒前
LOOK发布了新的文献求助10
2秒前
Jingjing发布了新的文献求助10
2秒前
药小博发布了新的文献求助10
2秒前
Mrwang完成签到,获得积分10
3秒前
qiyan应助xtt采纳,获得10
5秒前
hbnuaa发布了新的社区帖子
5秒前
CodeCraft应助JJJJJJ采纳,获得10
6秒前
7秒前
7秒前
8秒前
BDCGMAN完成签到,获得积分10
9秒前
八卦巧克力完成签到,获得积分10
10秒前
liu发布了新的文献求助30
10秒前
10秒前
11秒前
glowworm完成签到 ,获得积分10
11秒前
优秀的面包完成签到 ,获得积分10
11秒前
sss发布了新的文献求助10
12秒前
在水一方应助zzz采纳,获得10
12秒前
12秒前
初心发布了新的文献求助10
14秒前
ariaooo完成签到,获得积分10
14秒前
Adler发布了新的文献求助100
14秒前
月亮完成签到,获得积分10
14秒前
15秒前
笑啦啦完成签到,获得积分10
15秒前
zyfqpc完成签到,获得积分10
16秒前
华仔应助9527采纳,获得10
16秒前
16秒前
王佳怡完成签到 ,获得积分10
17秒前
17秒前
平常的念之完成签到,获得积分10
18秒前
秃头最可爱完成签到,获得积分10
18秒前
18秒前
爆米花应助初心采纳,获得10
18秒前
漂亮忆丹完成签到,获得积分10
19秒前
eccentric完成签到,获得积分10
19秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Single Element Semiconductors: Properties and Devices 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Parallel Optimization 200
Artificial bee colony algorithm 200
Deciphering Earth's History: the Practice of Stratigraphy 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3835256
求助须知:如何正确求助?哪些是违规求助? 3377691
关于积分的说明 10500085
捐赠科研通 3097330
什么是DOI,文献DOI怎么找? 1705674
邀请新用户注册赠送积分活动 820660
科研通“疑难数据库(出版商)”最低求助积分说明 772174