MRAS公司
控制理论(社会学)
观察员(物理)
计算机科学
双馈电机
控制工程
控制(管理)
人工智能
工程类
病媒控制
交流电源
感应电动机
电压
物理
量子力学
电气工程
作者
Lakhdar Saihi,Fateh Ferroudji,Khayra Roummani,Khaled Koussa
标识
DOI:10.1109/irec59750.2023.10389203
摘要
This study presents a robust sensor-less Sliding Mode Controller (SMC-l) for a wind turbine system with a Doubly Fed Induction Generator (DFIG). The control system focuses on managing the stator's active and reactive power through an SMC-l controller and utilizes a bidirectional converter for power transfer between the DFIG's rotor and the grid. A Model Reference Adaptive System (MRAS) observer, enhanced with an Artificial Neural Network (ANN) controller instead of the traditional PI regulator, is implemented to estimate mechanical parameters. The Particle Swarm Optimization (PSO) algorithm fine-tunes the parameter gains of the proposed controller. Simulation results demonstrate the improved robustness and effectiveness of the sensor-less SMC-l control system with the MRAS-ANN observer compared to conventional MRAS methods, positively impacting power generation.
科研通智能强力驱动
Strongly Powered by AbleSci AI