摘要
Advanced Functional MaterialsEarly View 2314178 Research Article Volatile Solid-Assisted Molecular Assembly Enables Eco-Friendly Processed Organic Photovoltaic Cells with High Efficiency and Photostability Lei Xu, Lei Xu Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, 211816 ChinaSearch for more papers by this authorYaomeng Xiong, Yaomeng Xiong Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, 211816 ChinaSearch for more papers by this authorSunsun Li, Corresponding Author Sunsun Li [email protected] Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, 211816 China E-mail: [email protected]; [email protected]Search for more papers by this authorWenchao Zhao, Wenchao Zhao Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037 ChinaSearch for more papers by this authorJianqi Zhang, Jianqi Zhang Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190 ChinaSearch for more papers by this authorChunyang Miao, Chunyang Miao Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, 211816 ChinaSearch for more papers by this authorYuyang Zhang, Yuyang Zhang Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, 211816 ChinaSearch for more papers by this authorTao Zhang, Tao Zhang State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 ChinaSearch for more papers by this authorJunjiang Wu, Junjiang Wu School of Materials Science and Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin, 300350 ChinaSearch for more papers by this authorShaoqing Zhang, Shaoqing Zhang State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 ChinaSearch for more papers by this authorQiming Peng, Qiming Peng Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, 211816 ChinaSearch for more papers by this authorZhen Wang, Zhen Wang Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, 211816 ChinaSearch for more papers by this authorLong Ye, Long Ye School of Materials Science and Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin, 300350 ChinaSearch for more papers by this authorJianhui Hou, Jianhui Hou State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 ChinaSearch for more papers by this authorJianpu Wang, Corresponding Author Jianpu Wang [email protected] orcid.org/0000-0002-2158-8689 Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, 211816 China Changzhou University, 21 Middle Gehu Road, Changzhou, 213164 China E-mail: [email protected]; [email protected]Search for more papers by this author Lei Xu, Lei Xu Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, 211816 ChinaSearch for more papers by this authorYaomeng Xiong, Yaomeng Xiong Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, 211816 ChinaSearch for more papers by this authorSunsun Li, Corresponding Author Sunsun Li [email protected] Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, 211816 China E-mail: [email protected]; [email protected]Search for more papers by this authorWenchao Zhao, Wenchao Zhao Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037 ChinaSearch for more papers by this authorJianqi Zhang, Jianqi Zhang Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190 ChinaSearch for more papers by this authorChunyang Miao, Chunyang Miao Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, 211816 ChinaSearch for more papers by this authorYuyang Zhang, Yuyang Zhang Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, 211816 ChinaSearch for more papers by this authorTao Zhang, Tao Zhang State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 ChinaSearch for more papers by this authorJunjiang Wu, Junjiang Wu School of Materials Science and Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin, 300350 ChinaSearch for more papers by this authorShaoqing Zhang, Shaoqing Zhang State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 ChinaSearch for more papers by this authorQiming Peng, Qiming Peng Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, 211816 ChinaSearch for more papers by this authorZhen Wang, Zhen Wang Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, 211816 ChinaSearch for more papers by this authorLong Ye, Long Ye School of Materials Science and Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin, 300350 ChinaSearch for more papers by this authorJianhui Hou, Jianhui Hou State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 ChinaSearch for more papers by this authorJianpu Wang, Corresponding Author Jianpu Wang [email protected] orcid.org/0000-0002-2158-8689 Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, 211816 China Changzhou University, 21 Middle Gehu Road, Changzhou, 213164 China E-mail: [email protected]; [email protected]Search for more papers by this author First published: 04 January 2024 https://doi.org/10.1002/adfm.202314178Read the full textAboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Abstract Achieving environmentally friendly solvent-processed high-performance organic photovoltaic cells (OPVs) is a crucial step toward their commercialization. Currently, OPVs with competitive efficiencies rely heavily on harmful halogenated solvent additives. Herein, the green and low-cost 9-fluorenone (9-FL) is employed as a solid additive. By using the o-xylene/9-FL solvent system, the PM6:BTP-eC9-based devices deliver power-conversion efficiencies of 18.6% and 17.9% via spin-coating and blade-coating respectively, outperforming all PM6:Y-series binary devices with green solvents. It is found that the addition of 9-FL can regulate the molecular assembly of both PM6 and BTP-eC9 in film-formation (molecule-level mixing) and post-annealing (thermal-assisted molecular reorganization with additive volatilization) stages, so as to optimize the blend morphology. As a result, the charge transport ability of donor and acceptor phases are simultaneously enhanced, and the trap-assisted recombination is reduced, which contributes to the higher short-circuit current density and fill factor. Moreover, the generation of photo-induced traps is significantly suppressed, resulting in improved stability under illumination. It is further demonstrated the excellent universality of 9-FL in various photoactive systems, making it a promising strategy to advance the development of eco-friendly OPVs. Conflict of Interest The authors declare no conflict of interest. Open Research Data Availability Statement The data that support the findings of this study are available from the corresponding author upon reasonable request. Supporting Information Filename Description adfm202314178-sup-0001-SuppMat.pdf2.2 MB Supporting Information adfm202314178-sup-0002-csv.zip1.3 KB Supporting Information Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article. References 1F. C. Krebs, N. Espinosa, M. Hösel, R. R. Søndergaard, M. Jørgensen, Adv. Mater. 2014, 26, 29. 10.1002/adma.201302031 CASPubMedWeb of Science®Google Scholar 2G. Zhang, F. R. Lin, F. Qi, T. Heumüller, A. Distler, H.-J. Egelhaaf, N. Li, P. C. Y. Chow, C. J. Brabec, A. K.-Y. Jen, H.-L. Yip, Chem. Rev. 2022, 122, 14180. 10.1021/acs.chemrev.1c00955 CASPubMedWeb of Science®Google Scholar 3Y. Li, G. Xu, C. Cui, Y. Li, Adv. Energy Mater. 2018, 8, 1701791. 10.1002/aenm.201701791 Web of Science®Google Scholar 4H. Lu, W. Liu, G. Ran, Z. Liang, H. Li, N. Wei, H. Wu, Z. Ma, Y. Liu, W. Zhang, X. Xu, Z. Bo, Angew. Chem., Int. Ed. 2023, 135, 202314420. 10.1002/ange.202314420 Google Scholar 5L. Zhu, M. Zhang, J. Xu, C. Li, J. Yan, G. Zhou, W. Zhong, T. Hao, J. Song, X. Xue, Z. Zhou, R. Zeng, H. Zhu, C.-C. Chen, R. C. I. Mackenzie, Y. Zou, J. Nelson, Y. Zhang, Y. Sun, F. Liu, Nat. Mater. 2022, 21, 656. 10.1038/s41563-022-01244-y CASPubMedWeb of Science®Google Scholar 6Z. Chen, J. Zhu, D. Yang, W. Song, J. Shi, J. Ge, Y. Guo, X. Tong, F. Chen, Z. Ge, Energy Environ. Sci. 2023, 16, 3119. 10.1039/D3EE01164J CASWeb of Science®Google Scholar 7Z. Zheng, J. Wang, P. Bi, J. Ren, Y. Wang, Y. Yang, X. Liu, S. Zhang, J. Hou, Joule 2022, 6, 171. 10.1016/j.joule.2021.12.017 CASWeb of Science®Google Scholar 8X. Xu, W. Jing, H. Meng, Y. Guo, L. Yu, R. Li, Q. Peng, Adv. Mater. 2023, 35, 2208997. 10.1002/adma.202208997 CASPubMedWeb of Science®Google Scholar 9M. Zhang, B. Chang, R. Zhang, S. Li, X. Liu, L. Zeng, Q. Chen, L. Wang, L. Yang, H. Wang, J. Liu, F. Gao, Z.-G. Zhang, Adv. Mater. 2023, https://doi.org/10.1002/adma.202308606. 10.1002/adma.202308606 Google Scholar 10C. He, Y. Pan, Y. Ouyang, Q. Shen, Y. Gao, K. Yan, J. Fang, Y. Chen, C.-Q. Ma, J. Min, C. Zhang, L. Zuo, H. Chen, Energy Environ. Sci. 2022, 15, 2537. 10.1039/D2EE00595F CASWeb of Science®Google Scholar 11R. Sun, Y. Wu, X. Yang, Y. Gao, Z. Chen, K. Li, J. Qiao, T. Wang, J. Guo, C. Liu, X. Hao, H. Zhu, J. Min, Adv. Mater. 2022, 34, 2110147. 10.1002/adma.202110147 CASPubMedWeb of Science®Google Scholar 12Z. Yao, X. Cao, X. Bi, T. He, Y. Li, X. Jia, H. Liang, Y. Guo, G. Long, B. Kan, C. Li, X. Wan, Y. Chen, Angew. Chem., Int. Ed. 2023, 62, 202312630. 10.1002/anie.202312630 CASPubMedGoogle Scholar 13Z. Jia, Q. Ma, Z. Chen, L. Meng, N. Jain, I. Angunawela, S. Qin, X. Kong, X. Li, Y. Yang, H. Zhu, H. Ade, F. Gao, Y. Li, Nat. Commun. 2023, 14, 1236. 10.1038/s41467-023-36917-y CASPubMedWeb of Science®Google Scholar 14S. Lee, D. Jeong, C. Kim, C. Lee, H. Kang, H. Y. Woo, B. J. Kim, ACS Nano 2020, 14, 14493. 10.1021/acsnano.0c07488 CASPubMedWeb of Science®Google Scholar 15H. Li, S. Liu, X. Wu, S. Yao, X. Hu, Y. Chen, Energy Environ. Sci. 2023, 16, 76. 10.1039/D2EE03246E CASWeb of Science®Google Scholar 16C. Yang, M. Jiang, S. Wang, B. Zhang, P. Mao, H. Y. Woo, F. Zhang, J.-L. Wang, Q. An, Adv. Mater. 2023, 2305356. 10.1002/adma.202305356 Google Scholar 17M. Sun, K.-N. Zhang, J.-W. Qiao, L.-H. Wang, M. Li, P. Lu, W. Qin, Z. Xiao, L. Zhang, X.-T. Hao, L. Ding, X.-Y. Du, Adv. Energy Mater. 2023, 13, 2203465. 10.1002/aenm.202203465 CASWeb of Science®Google Scholar 18R. Ma, X. Jiang, J. Fu, T. Zhu, C. Yan, K. Wu, P. Müller-Buschbaum, G. Li, Energy Environ. Sci. 2023, 12, 15. Google Scholar 19J. Wang, Y. Cui, Y. Xu, K. Xian, P. Bi, Z. Chen, K. Zhou, L. Ma, T. Zhang, Y. Yang, Y. Zu, H. Yao, X. Hao, L. Ye, J. Hou, Adv. Mater. 2022, 34, 2205009. 10.1002/adma.202205009 CASPubMedWeb of Science®Google Scholar 20J. Liu, J. Deng, Y. Zhu, X. Geng, L. Zhang, S. Y. Jeong, D. Zhou, H. Y. Woo, D. Chen, F. Wu, L. Chen, Adv. Mater. 2023, 35, 2208008. 10.1002/adma.202208008 CASWeb of Science®Google Scholar 21H. Zhuo, X. Li, J. Zhang, S. Qin, J. Guo, R. Zhou, X. Jiang, X. Wu, Z. Chen, J. Li, L. Meng, Y. Li, Angew. Chem., Int. Ed. 2023, 62, 202303551. 10.1002/anie.202303551 CASPubMedWeb of Science®Google Scholar 22J. Hai, L. Li, Y. Song, X. Liu, X. Shi, Z. Wang, X. Chen, Z. Lu, X. Li, Y. Pang, J. Yu, H. Hu, S. Chen, Chem. Eng. J. 2023, 462, 142178. 10.1016/j.cej.2023.142178 CASGoogle Scholar 23J. Yuan, Y. Zhang, L. Zhou, G. Zhang, H.-L. Yip, T.-K. Lau, X. Lu, C. Zhu, H. Peng, P. A. Johnson, M. Leclerc, Y. Cao, J. Ulanski, Y. Li, Y. Zou, Joule 2019, 3, 1140. 10.1016/j.joule.2019.01.004 CASWeb of Science®Google Scholar 24C. Cui, Y. Li, Aggregate 2021, 2, e31. 10.1002/agt2.31 CASWeb of Science®Google Scholar 25B. J. Tremolet De Villers, K. A. O'hara, D. P. Ostrowski, P. H. Biddle, S. E. Shaheen, M. L. Chabinyc, D. C. Olson, N. Kopidakis, Chem. Mater. 2016, 28, 876. 10.1021/acs.chemmater.5b04346 CASWeb of Science®Google Scholar 26L. Zhong, S.-H. Kang, J. Oh, S. Jung, Y. Cho, G. Park, S. Lee, S.-J. Yoon, H. Park, C. Yang, Adv. Funct. Mater. 2022, 32, 2201080. 10.1002/adfm.202201080 CASWeb of Science®Google Scholar 27J. Wang, Y. Wang, P. Bi, Z. Chen, J. Qiao, J. Li, W. Wang, Z. Zheng, S. Zhang, X. Hao, J. Hou, Adv. Mater. 2023, 35, 2301583. 10.1002/adma.202301583 CASPubMedWeb of Science®Google Scholar 28M. Xiao, L. Liu, Y. Meng, B. Fan, W. Su, C. Jin, L. Liao, F. Yi, C. Xu, R. Zhang, A. K.-Y. Jen, W. Ma, Q. Fan, Sci. China Chem. 2023, 66, 1500. 10.1007/s11426-023-1564-8 CASWeb of Science®Google Scholar 29J. Fu, P. W. K. Fong, H. Liu, C.-S. Huang, X. Lu, S. Lu, M. Abdelsamie, T. Kodalle, C. M. Sutter-Fella, Y. Yang, G. Li, Nat. Commun. 2023, 14, 1760. 10.1038/s41467-023-37526-5 CASPubMedWeb of Science®Google Scholar 30X. Song, H. Xu, X. Jiang, S. Gao, X. Zhou, S. Xu, J. Li, J. Yu, W. Liu, W. Zhu, P. Müller-Buschbaum, Energy Environ. Sci. 2023, 12, 15. Google Scholar 31L. Kong, Z. Zhang, N. Zhao, Z. Cai, J. Zhang, M. Luo, X. Wang, M. Chen, W. Zhang, L. Zhang, Z. Wei, J. Chen, Adv. Energy Mater. 2023, 13, 2300763. 10.1002/aenm.202300763 CASGoogle Scholar 32R. Yu, H. Yao, L. Hong, Y. Qin, J. Zhu, Y. Cui, S. Li, J. Hou, Nat. Commun. 2018, 9, 4645. 10.1038/s41467-018-07017-z PubMedWeb of Science®Google Scholar 33Q. He, W. Sheng, M. Zhang, G. Xu, P. Zhu, H. Zhang, Z. Yao, F. Gao, F. Liu, X. Liao, Y. Chen, Adv. Energy Mater. 2021, 11, 2003390. 10.1002/aenm.202003390 CASWeb of Science®Google Scholar 34X. Xia, L. Mei, C. He, Z. Chen, N. Yao, M. Qin, R. Sun, Z. Zhang, Y. Pan, Y. Xiao, Y. Lin, J. Min, F. Zhang, H. Zhu, J.-L. Bredas, H. Chen, X.-K. Chen, X. Lu, J. Mater. Chem. A 2023, 11, 21895. 10.1039/D3TA05177C CASWeb of Science®Google Scholar 35Y. Cui, H. Yao, J. Zhang, K. Xian, T. Zhang, L. Hong, Y. Wang, Y. Xu, K. Ma, C. An, C. He, Z. Wei, F. Gao, J. Hou, Adv. Mater. 2020, 32, 1908205. 10.1002/adma.201908205 CASPubMedWeb of Science®Google Scholar 36S. Patel, B. Rathod, S. Regu, S. Chak, A. Shard, Chemistry Select 2020, 5, 10673. 10.1002/slct.202002695 CASGoogle Scholar 37Y. Xie, H. S. Ryu, L. Han, Y. Cai, X. Duan, D. Wei, H. Y. Woo, Y. Sun, Sci. China Chem. 2021, 64, 2161. 10.1007/s11426-021-1121-y CASWeb of Science®Google Scholar 38Z. He, C. Zhong, X. Huang, W.-Y. Wong, H. Wu, L. Chen, S. Su, Y. Cao, Adv. Mater. 2011, 23, 4636. 10.1002/adma.201103006 CASPubMedWeb of Science®Google Scholar 39J.-L. Wu, F.-C. Chen, Y.-S. Hsiao, F.-C. Chien, P. Chen, C.-H. Kuo, M. H. Huang, C.-S. Hsu, ACS Nano 2011, 5, 959. 10.1021/nn102295p CASPubMedWeb of Science®Google Scholar 40V. Gupta, A. K. K. Kyaw, D. H. Wang, S. Chand, G. C. Bazan, A. J. Heeger, Sci. Rep. 2013, 3, 1965. 10.1038/srep01965 PubMedWeb of Science®Google Scholar 41S. Guan, Y. Li, K. Yan, W. Fu, L. Zuo, H. Chen, Adv. Mater. 2022, 34, 2205844. 10.1002/adma.202205844 CASPubMedWeb of Science®Google Scholar 42Y. Liu, K. Zhou, X. Zhou, W. Xue, Z. Bi, H. Wu, Z. Ma, W. Ma, Macromol. Rapid Commun. 2022, 43, 2100871. 10.1002/marc.202100871 CASWeb of Science®Google Scholar 43H. Li, Y. Zhao, J. Fang, X. Zhu, B. Xia, K. Lu, Z. Wang, J. Zhang, X. Guo, Z. Wei, Adv. Energy Mater. 2018, 8, 1702377. 10.1002/aenm.201702377 Web of Science®Google Scholar 44W. Li, K. H. Hendriks, A. Furlan, W. S. C. Roelofs, S. C. J. Meskers, M. M. Wienk, R. A. J. Janssen, Adv. Mater. 2014, 26, 1565. 10.1002/adma.201304360 CASPubMedWeb of Science®Google Scholar 45T. Shan, Y. Zhang, Y. Wang, Z. Xie, Q. Wei, J. Xu, M. Zhang, C. Wang, Q. Bao, X. Wang, C.-C. Chen, J. Huang, Q. Chen, F. Liu, L. Chen, H. Zhong, Nat. Commun. 2020, 11, 5585. 10.1038/s41467-020-19429-x CASPubMedWeb of Science®Google Scholar 46M. Zhang, L. Zhu, T. Hao, G. Zhou, C. Qiu, Z. Zhao, N. Hartmann, B. Xiao, Y. Zou, W. Feng, H. Zhu, M. Zhang, Y. Zhang, Y. Li, T. P. Russell, F. Liu, Adv. Mater. 2021, 33, 2007177. 10.1002/adma.202007177 CASPubMedWeb of Science®Google Scholar 47T. Xia, Y. Cai, H. Fu, Y. Sun, Sci. China Chem. 2019, 62, 662. 10.1007/s11426-019-9478-2 CASWeb of Science®Google Scholar 48J. Song, Y. Li, Y. Cai, R. Zhang, S. Wang, J. Xin, L. Han, D. Wei, W. Ma, F. Gao, Y. Sun, Matter 2022, 5, 4047. 10.1016/j.matt.2022.08.011 CASGoogle Scholar 49L. Di Mario, D. Garcia Romero, M. J. Pieters, F. Eller, C. Zhu, G. Bongiovanni, E. M. Herzig, A. Mura, M. A. Loi, J. Mater. Chem. A 2023, 11, 2419. 10.1039/D2TA08603D CASPubMedWeb of Science®Google Scholar 50S. Rasool, J. W. Kim, H. W. Cho, Y.-J. Kim, D. C. Lee, C. B. Park, W. Lee, O.-H. Kwon, S. Cho, J. Y. Kim, Adv. Energy Mater. 2023, 13, 2203452. 10.1002/aenm.202203452 CASWeb of Science®Google Scholar 51Z. Zhong, S. Chen, J. Zhao, J. Xie, K. Zhang, T. Jia, C. Zhu, J. Jing, Y. Liang, L. Hong, S. Zhu, D. Ma, F. Huang, Adv. Energy Mater. 2023, 13, 2302273. 10.1002/aenm.202302273 CASGoogle Scholar 52Y. Wang, M. J. Jafari, N. Wang, D. Qian, F. Zhang, T. Ederth, E. Moons, J. Wang, O. Inganäs, W. Huang, F. Gao, J. Mater. Chem. A 2018, 6, 11884. 10.1039/C8TA03112F CASWeb of Science®Google Scholar 53L. Ma, S. Zhang, H. Yao, Y. Xu, J. Wang, Y. Zu, J. Hou, ACS Appl. Mater. Interfaces 2020, 12, 18777. 10.1021/acsami.0c05172 CASPubMedWeb of Science®Google Scholar 54T. Heumueller, W. R. Mateker, I. T. Sachs-Quintana, K. Vandewal, J. A. Bartelt, T. M. Burke, T. Ameri, C. J. Brabec, M. D. Mcgehee, Energy Environ. Sci. 2014, 7, 2974. 10.1039/C4EE01842G CASWeb of Science®Google Scholar 55S. Li, L. Ye, W. Zhao, S. Zhang, S. Mukherjee, H. Ade, J. Hou, Adv. Mater. 2016, 28, 9423. 10.1002/adma.201602776 CASPubMedWeb of Science®Google Scholar 56W. Li, L. Ye, S. Li, H. Yao, H. Ade, J. Hou, Adv. Mater. 2018, 30, 1707170. 10.1002/adma.201707170 PubMedWeb of Science®Google Scholar 57C. Li, J. Zhou, J. Song, J. Xu, H. Zhang, X. Zhang, J. Guo, L. Zhu, D. Wei, G. Han, J. Min, Y. Zhang, Z. Xie, Y. Yi, H. Yan, F. Gao, F. Liu, Y. Sun, Nat. Energy 2021, 6, 605. 10.1038/s41560-021-00820-x CASWeb of Science®Google Scholar 58Z. Luo, T. Liu, R. Ma, Y. Xiao, L. Zhan, G. Zhang, H. Sun, F. Ni, G. Chai, J. Wang, C. Zhong, Y. Zou, X. Guo, X. Lu, H. Chen, H. Yan, C. Yang, Adv. Mater. 2020, 32, 2005942. 10.1002/adma.202005942 CASWeb of Science®Google Scholar 59L. Ma, S. Zhang, J. Zhu, J. Wang, J. Ren, J. Zhang, J. Hou, Nat. Commun. 2021, 12, 5093. 10.1038/s41467-021-25394-w CASPubMedWeb of Science®Google Scholar Early ViewOnline Version of Record before inclusion in an issue2314178 ReferencesRelatedInformation