Volatile Solid‐Assisted Molecular Assembly Enables Eco‐Friendly Processed Organic Photovoltaic Cells with High Efficiency and Photostability

材料科学 环境友好型 有机太阳能电池 化学工程 能量转换效率 光伏系统 涂层 溶剂 聚苯乙烯 分子 纳米技术 聚合物 有机化学 光电子学 复合材料 生态学 化学 工程类 生物
作者
Xu Liu,Ying Xiong,Sunsun Li,Wenchao Zhao,Jianqi Zhang,Chunyang Miao,Yuyang Zhang,Tao Zhang,Junjiang Wu,Shaoqing Zhang,Qiming Peng,Weimin Zhen,Long Ye,Jianhui Hou,Jianpu Wang
出处
期刊:Advanced Functional Materials [Wiley]
被引量:1
标识
DOI:10.1002/adfm.202314178
摘要

Advanced Functional MaterialsEarly View 2314178 Research Article Volatile Solid-Assisted Molecular Assembly Enables Eco-Friendly Processed Organic Photovoltaic Cells with High Efficiency and Photostability Lei Xu, Lei Xu Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, 211816 ChinaSearch for more papers by this authorYaomeng Xiong, Yaomeng Xiong Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, 211816 ChinaSearch for more papers by this authorSunsun Li, Corresponding Author Sunsun Li [email protected] Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, 211816 China E-mail: [email protected]; [email protected]Search for more papers by this authorWenchao Zhao, Wenchao Zhao Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037 ChinaSearch for more papers by this authorJianqi Zhang, Jianqi Zhang Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190 ChinaSearch for more papers by this authorChunyang Miao, Chunyang Miao Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, 211816 ChinaSearch for more papers by this authorYuyang Zhang, Yuyang Zhang Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, 211816 ChinaSearch for more papers by this authorTao Zhang, Tao Zhang State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 ChinaSearch for more papers by this authorJunjiang Wu, Junjiang Wu School of Materials Science and Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin, 300350 ChinaSearch for more papers by this authorShaoqing Zhang, Shaoqing Zhang State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 ChinaSearch for more papers by this authorQiming Peng, Qiming Peng Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, 211816 ChinaSearch for more papers by this authorZhen Wang, Zhen Wang Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, 211816 ChinaSearch for more papers by this authorLong Ye, Long Ye School of Materials Science and Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin, 300350 ChinaSearch for more papers by this authorJianhui Hou, Jianhui Hou State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 ChinaSearch for more papers by this authorJianpu Wang, Corresponding Author Jianpu Wang [email protected] orcid.org/0000-0002-2158-8689 Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, 211816 China Changzhou University, 21 Middle Gehu Road, Changzhou, 213164 China E-mail: [email protected]; [email protected]Search for more papers by this author Lei Xu, Lei Xu Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, 211816 ChinaSearch for more papers by this authorYaomeng Xiong, Yaomeng Xiong Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, 211816 ChinaSearch for more papers by this authorSunsun Li, Corresponding Author Sunsun Li [email protected] Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, 211816 China E-mail: [email protected]; [email protected]Search for more papers by this authorWenchao Zhao, Wenchao Zhao Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037 ChinaSearch for more papers by this authorJianqi Zhang, Jianqi Zhang Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190 ChinaSearch for more papers by this authorChunyang Miao, Chunyang Miao Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, 211816 ChinaSearch for more papers by this authorYuyang Zhang, Yuyang Zhang Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, 211816 ChinaSearch for more papers by this authorTao Zhang, Tao Zhang State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 ChinaSearch for more papers by this authorJunjiang Wu, Junjiang Wu School of Materials Science and Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin, 300350 ChinaSearch for more papers by this authorShaoqing Zhang, Shaoqing Zhang State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 ChinaSearch for more papers by this authorQiming Peng, Qiming Peng Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, 211816 ChinaSearch for more papers by this authorZhen Wang, Zhen Wang Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, 211816 ChinaSearch for more papers by this authorLong Ye, Long Ye School of Materials Science and Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin, 300350 ChinaSearch for more papers by this authorJianhui Hou, Jianhui Hou State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 ChinaSearch for more papers by this authorJianpu Wang, Corresponding Author Jianpu Wang [email protected] orcid.org/0000-0002-2158-8689 Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, 211816 China Changzhou University, 21 Middle Gehu Road, Changzhou, 213164 China E-mail: [email protected]; [email protected]Search for more papers by this author First published: 04 January 2024 https://doi.org/10.1002/adfm.202314178Read the full textAboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Abstract Achieving environmentally friendly solvent-processed high-performance organic photovoltaic cells (OPVs) is a crucial step toward their commercialization. Currently, OPVs with competitive efficiencies rely heavily on harmful halogenated solvent additives. Herein, the green and low-cost 9-fluorenone (9-FL) is employed as a solid additive. By using the o-xylene/9-FL solvent system, the PM6:BTP-eC9-based devices deliver power-conversion efficiencies of 18.6% and 17.9% via spin-coating and blade-coating respectively, outperforming all PM6:Y-series binary devices with green solvents. It is found that the addition of 9-FL can regulate the molecular assembly of both PM6 and BTP-eC9 in film-formation (molecule-level mixing) and post-annealing (thermal-assisted molecular reorganization with additive volatilization) stages, so as to optimize the blend morphology. As a result, the charge transport ability of donor and acceptor phases are simultaneously enhanced, and the trap-assisted recombination is reduced, which contributes to the higher short-circuit current density and fill factor. Moreover, the generation of photo-induced traps is significantly suppressed, resulting in improved stability under illumination. It is further demonstrated the excellent universality of 9-FL in various photoactive systems, making it a promising strategy to advance the development of eco-friendly OPVs. Conflict of Interest The authors declare no conflict of interest. Open Research Data Availability Statement The data that support the findings of this study are available from the corresponding author upon reasonable request. Supporting Information Filename Description adfm202314178-sup-0001-SuppMat.pdf2.2 MB Supporting Information adfm202314178-sup-0002-csv.zip1.3 KB Supporting Information Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article. References 1F. C. Krebs, N. Espinosa, M. Hösel, R. R. Søndergaard, M. Jørgensen, Adv. Mater. 2014, 26, 29. 10.1002/adma.201302031 CASPubMedWeb of Science®Google Scholar 2G. Zhang, F. R. Lin, F. Qi, T. Heumüller, A. Distler, H.-J. Egelhaaf, N. Li, P. C. Y. Chow, C. J. Brabec, A. K.-Y. Jen, H.-L. Yip, Chem. Rev. 2022, 122, 14180. 10.1021/acs.chemrev.1c00955 CASPubMedWeb of Science®Google Scholar 3Y. Li, G. Xu, C. Cui, Y. Li, Adv. Energy Mater. 2018, 8, 1701791. 10.1002/aenm.201701791 Web of Science®Google Scholar 4H. Lu, W. Liu, G. Ran, Z. Liang, H. Li, N. Wei, H. Wu, Z. Ma, Y. Liu, W. Zhang, X. Xu, Z. Bo, Angew. Chem., Int. Ed. 2023, 135, 202314420. 10.1002/ange.202314420 Google Scholar 5L. Zhu, M. Zhang, J. Xu, C. Li, J. Yan, G. Zhou, W. Zhong, T. Hao, J. Song, X. Xue, Z. Zhou, R. Zeng, H. Zhu, C.-C. Chen, R. C. I. Mackenzie, Y. Zou, J. Nelson, Y. Zhang, Y. Sun, F. Liu, Nat. Mater. 2022, 21, 656. 10.1038/s41563-022-01244-y CASPubMedWeb of Science®Google Scholar 6Z. Chen, J. Zhu, D. Yang, W. Song, J. Shi, J. Ge, Y. Guo, X. Tong, F. Chen, Z. Ge, Energy Environ. Sci. 2023, 16, 3119. 10.1039/D3EE01164J CASWeb of Science®Google Scholar 7Z. Zheng, J. Wang, P. Bi, J. Ren, Y. Wang, Y. Yang, X. Liu, S. Zhang, J. Hou, Joule 2022, 6, 171. 10.1016/j.joule.2021.12.017 CASWeb of Science®Google Scholar 8X. Xu, W. Jing, H. Meng, Y. Guo, L. Yu, R. Li, Q. Peng, Adv. Mater. 2023, 35, 2208997. 10.1002/adma.202208997 CASPubMedWeb of Science®Google Scholar 9M. Zhang, B. Chang, R. Zhang, S. Li, X. Liu, L. Zeng, Q. Chen, L. Wang, L. Yang, H. Wang, J. Liu, F. Gao, Z.-G. Zhang, Adv. Mater. 2023, https://doi.org/10.1002/adma.202308606. 10.1002/adma.202308606 Google Scholar 10C. He, Y. Pan, Y. Ouyang, Q. Shen, Y. Gao, K. Yan, J. Fang, Y. Chen, C.-Q. Ma, J. Min, C. Zhang, L. Zuo, H. Chen, Energy Environ. Sci. 2022, 15, 2537. 10.1039/D2EE00595F CASWeb of Science®Google Scholar 11R. Sun, Y. Wu, X. Yang, Y. Gao, Z. Chen, K. Li, J. Qiao, T. Wang, J. Guo, C. Liu, X. Hao, H. Zhu, J. Min, Adv. Mater. 2022, 34, 2110147. 10.1002/adma.202110147 CASPubMedWeb of Science®Google Scholar 12Z. Yao, X. Cao, X. Bi, T. He, Y. Li, X. Jia, H. Liang, Y. Guo, G. Long, B. Kan, C. Li, X. Wan, Y. Chen, Angew. Chem., Int. Ed. 2023, 62, 202312630. 10.1002/anie.202312630 CASPubMedGoogle Scholar 13Z. Jia, Q. Ma, Z. Chen, L. Meng, N. Jain, I. Angunawela, S. Qin, X. Kong, X. Li, Y. Yang, H. Zhu, H. Ade, F. Gao, Y. Li, Nat. Commun. 2023, 14, 1236. 10.1038/s41467-023-36917-y CASPubMedWeb of Science®Google Scholar 14S. Lee, D. Jeong, C. Kim, C. Lee, H. Kang, H. Y. Woo, B. J. Kim, ACS Nano 2020, 14, 14493. 10.1021/acsnano.0c07488 CASPubMedWeb of Science®Google Scholar 15H. Li, S. Liu, X. Wu, S. Yao, X. Hu, Y. Chen, Energy Environ. Sci. 2023, 16, 76. 10.1039/D2EE03246E CASWeb of Science®Google Scholar 16C. Yang, M. Jiang, S. Wang, B. Zhang, P. Mao, H. Y. Woo, F. Zhang, J.-L. Wang, Q. An, Adv. Mater. 2023, 2305356. 10.1002/adma.202305356 Google Scholar 17M. Sun, K.-N. Zhang, J.-W. Qiao, L.-H. Wang, M. Li, P. Lu, W. Qin, Z. Xiao, L. Zhang, X.-T. Hao, L. Ding, X.-Y. Du, Adv. Energy Mater. 2023, 13, 2203465. 10.1002/aenm.202203465 CASWeb of Science®Google Scholar 18R. Ma, X. Jiang, J. Fu, T. Zhu, C. Yan, K. Wu, P. Müller-Buschbaum, G. Li, Energy Environ. Sci. 2023, 12, 15. Google Scholar 19J. Wang, Y. Cui, Y. Xu, K. Xian, P. Bi, Z. Chen, K. Zhou, L. Ma, T. Zhang, Y. Yang, Y. Zu, H. Yao, X. Hao, L. Ye, J. Hou, Adv. Mater. 2022, 34, 2205009. 10.1002/adma.202205009 CASPubMedWeb of Science®Google Scholar 20J. Liu, J. Deng, Y. Zhu, X. Geng, L. Zhang, S. Y. Jeong, D. Zhou, H. Y. Woo, D. Chen, F. Wu, L. Chen, Adv. Mater. 2023, 35, 2208008. 10.1002/adma.202208008 CASWeb of Science®Google Scholar 21H. Zhuo, X. Li, J. Zhang, S. Qin, J. Guo, R. Zhou, X. Jiang, X. Wu, Z. Chen, J. Li, L. Meng, Y. Li, Angew. Chem., Int. Ed. 2023, 62, 202303551. 10.1002/anie.202303551 CASPubMedWeb of Science®Google Scholar 22J. Hai, L. Li, Y. Song, X. Liu, X. Shi, Z. Wang, X. Chen, Z. Lu, X. Li, Y. Pang, J. Yu, H. Hu, S. Chen, Chem. Eng. J. 2023, 462, 142178. 10.1016/j.cej.2023.142178 CASGoogle Scholar 23J. Yuan, Y. Zhang, L. Zhou, G. Zhang, H.-L. Yip, T.-K. Lau, X. Lu, C. Zhu, H. Peng, P. A. Johnson, M. Leclerc, Y. Cao, J. Ulanski, Y. Li, Y. Zou, Joule 2019, 3, 1140. 10.1016/j.joule.2019.01.004 CASWeb of Science®Google Scholar 24C. Cui, Y. Li, Aggregate 2021, 2, e31. 10.1002/agt2.31 CASWeb of Science®Google Scholar 25B. J. Tremolet De Villers, K. A. O'hara, D. P. Ostrowski, P. H. Biddle, S. E. Shaheen, M. L. Chabinyc, D. C. Olson, N. Kopidakis, Chem. Mater. 2016, 28, 876. 10.1021/acs.chemmater.5b04346 CASWeb of Science®Google Scholar 26L. Zhong, S.-H. Kang, J. Oh, S. Jung, Y. Cho, G. Park, S. Lee, S.-J. Yoon, H. Park, C. Yang, Adv. Funct. Mater. 2022, 32, 2201080. 10.1002/adfm.202201080 CASWeb of Science®Google Scholar 27J. Wang, Y. Wang, P. Bi, Z. Chen, J. Qiao, J. Li, W. Wang, Z. Zheng, S. Zhang, X. Hao, J. Hou, Adv. Mater. 2023, 35, 2301583. 10.1002/adma.202301583 CASPubMedWeb of Science®Google Scholar 28M. Xiao, L. Liu, Y. Meng, B. Fan, W. Su, C. Jin, L. Liao, F. Yi, C. Xu, R. Zhang, A. K.-Y. Jen, W. Ma, Q. Fan, Sci. China Chem. 2023, 66, 1500. 10.1007/s11426-023-1564-8 CASWeb of Science®Google Scholar 29J. Fu, P. W. K. Fong, H. Liu, C.-S. Huang, X. Lu, S. Lu, M. Abdelsamie, T. Kodalle, C. M. Sutter-Fella, Y. Yang, G. Li, Nat. Commun. 2023, 14, 1760. 10.1038/s41467-023-37526-5 CASPubMedWeb of Science®Google Scholar 30X. Song, H. Xu, X. Jiang, S. Gao, X. Zhou, S. Xu, J. Li, J. Yu, W. Liu, W. Zhu, P. Müller-Buschbaum, Energy Environ. Sci. 2023, 12, 15. Google Scholar 31L. Kong, Z. Zhang, N. Zhao, Z. Cai, J. Zhang, M. Luo, X. Wang, M. Chen, W. Zhang, L. Zhang, Z. Wei, J. Chen, Adv. Energy Mater. 2023, 13, 2300763. 10.1002/aenm.202300763 CASGoogle Scholar 32R. Yu, H. Yao, L. Hong, Y. Qin, J. Zhu, Y. Cui, S. Li, J. Hou, Nat. Commun. 2018, 9, 4645. 10.1038/s41467-018-07017-z PubMedWeb of Science®Google Scholar 33Q. He, W. Sheng, M. Zhang, G. Xu, P. Zhu, H. Zhang, Z. Yao, F. Gao, F. Liu, X. Liao, Y. Chen, Adv. Energy Mater. 2021, 11, 2003390. 10.1002/aenm.202003390 CASWeb of Science®Google Scholar 34X. Xia, L. Mei, C. He, Z. Chen, N. Yao, M. Qin, R. Sun, Z. Zhang, Y. Pan, Y. Xiao, Y. Lin, J. Min, F. Zhang, H. Zhu, J.-L. Bredas, H. Chen, X.-K. Chen, X. Lu, J. Mater. Chem. A 2023, 11, 21895. 10.1039/D3TA05177C CASWeb of Science®Google Scholar 35Y. Cui, H. Yao, J. Zhang, K. Xian, T. Zhang, L. Hong, Y. Wang, Y. Xu, K. Ma, C. An, C. He, Z. Wei, F. Gao, J. Hou, Adv. Mater. 2020, 32, 1908205. 10.1002/adma.201908205 CASPubMedWeb of Science®Google Scholar 36S. Patel, B. Rathod, S. Regu, S. Chak, A. Shard, Chemistry Select 2020, 5, 10673. 10.1002/slct.202002695 CASGoogle Scholar 37Y. Xie, H. S. Ryu, L. Han, Y. Cai, X. Duan, D. Wei, H. Y. Woo, Y. Sun, Sci. China Chem. 2021, 64, 2161. 10.1007/s11426-021-1121-y CASWeb of Science®Google Scholar 38Z. He, C. Zhong, X. Huang, W.-Y. Wong, H. Wu, L. Chen, S. Su, Y. Cao, Adv. Mater. 2011, 23, 4636. 10.1002/adma.201103006 CASPubMedWeb of Science®Google Scholar 39J.-L. Wu, F.-C. Chen, Y.-S. Hsiao, F.-C. Chien, P. Chen, C.-H. Kuo, M. H. Huang, C.-S. Hsu, ACS Nano 2011, 5, 959. 10.1021/nn102295p CASPubMedWeb of Science®Google Scholar 40V. Gupta, A. K. K. Kyaw, D. H. Wang, S. Chand, G. C. Bazan, A. J. Heeger, Sci. Rep. 2013, 3, 1965. 10.1038/srep01965 PubMedWeb of Science®Google Scholar 41S. Guan, Y. Li, K. Yan, W. Fu, L. Zuo, H. Chen, Adv. Mater. 2022, 34, 2205844. 10.1002/adma.202205844 CASPubMedWeb of Science®Google Scholar 42Y. Liu, K. Zhou, X. Zhou, W. Xue, Z. Bi, H. Wu, Z. Ma, W. Ma, Macromol. Rapid Commun. 2022, 43, 2100871. 10.1002/marc.202100871 CASWeb of Science®Google Scholar 43H. Li, Y. Zhao, J. Fang, X. Zhu, B. Xia, K. Lu, Z. Wang, J. Zhang, X. Guo, Z. Wei, Adv. Energy Mater. 2018, 8, 1702377. 10.1002/aenm.201702377 Web of Science®Google Scholar 44W. Li, K. H. Hendriks, A. Furlan, W. S. C. Roelofs, S. C. J. Meskers, M. M. Wienk, R. A. J. Janssen, Adv. Mater. 2014, 26, 1565. 10.1002/adma.201304360 CASPubMedWeb of Science®Google Scholar 45T. Shan, Y. Zhang, Y. Wang, Z. Xie, Q. Wei, J. Xu, M. Zhang, C. Wang, Q. Bao, X. Wang, C.-C. Chen, J. Huang, Q. Chen, F. Liu, L. Chen, H. Zhong, Nat. Commun. 2020, 11, 5585. 10.1038/s41467-020-19429-x CASPubMedWeb of Science®Google Scholar 46M. Zhang, L. Zhu, T. Hao, G. Zhou, C. Qiu, Z. Zhao, N. Hartmann, B. Xiao, Y. Zou, W. Feng, H. Zhu, M. Zhang, Y. Zhang, Y. Li, T. P. Russell, F. Liu, Adv. Mater. 2021, 33, 2007177. 10.1002/adma.202007177 CASPubMedWeb of Science®Google Scholar 47T. Xia, Y. Cai, H. Fu, Y. Sun, Sci. China Chem. 2019, 62, 662. 10.1007/s11426-019-9478-2 CASWeb of Science®Google Scholar 48J. Song, Y. Li, Y. Cai, R. Zhang, S. Wang, J. Xin, L. Han, D. Wei, W. Ma, F. Gao, Y. Sun, Matter 2022, 5, 4047. 10.1016/j.matt.2022.08.011 CASGoogle Scholar 49L. Di Mario, D. Garcia Romero, M. J. Pieters, F. Eller, C. Zhu, G. Bongiovanni, E. M. Herzig, A. Mura, M. A. Loi, J. Mater. Chem. A 2023, 11, 2419. 10.1039/D2TA08603D CASPubMedWeb of Science®Google Scholar 50S. Rasool, J. W. Kim, H. W. Cho, Y.-J. Kim, D. C. Lee, C. B. Park, W. Lee, O.-H. Kwon, S. Cho, J. Y. Kim, Adv. Energy Mater. 2023, 13, 2203452. 10.1002/aenm.202203452 CASWeb of Science®Google Scholar 51Z. Zhong, S. Chen, J. Zhao, J. Xie, K. Zhang, T. Jia, C. Zhu, J. Jing, Y. Liang, L. Hong, S. Zhu, D. Ma, F. Huang, Adv. Energy Mater. 2023, 13, 2302273. 10.1002/aenm.202302273 CASGoogle Scholar 52Y. Wang, M. J. Jafari, N. Wang, D. Qian, F. Zhang, T. Ederth, E. Moons, J. Wang, O. Inganäs, W. Huang, F. Gao, J. Mater. Chem. A 2018, 6, 11884. 10.1039/C8TA03112F CASWeb of Science®Google Scholar 53L. Ma, S. Zhang, H. Yao, Y. Xu, J. Wang, Y. Zu, J. Hou, ACS Appl. Mater. Interfaces 2020, 12, 18777. 10.1021/acsami.0c05172 CASPubMedWeb of Science®Google Scholar 54T. Heumueller, W. R. Mateker, I. T. Sachs-Quintana, K. Vandewal, J. A. Bartelt, T. M. Burke, T. Ameri, C. J. Brabec, M. D. Mcgehee, Energy Environ. Sci. 2014, 7, 2974. 10.1039/C4EE01842G CASWeb of Science®Google Scholar 55S. Li, L. Ye, W. Zhao, S. Zhang, S. Mukherjee, H. Ade, J. Hou, Adv. Mater. 2016, 28, 9423. 10.1002/adma.201602776 CASPubMedWeb of Science®Google Scholar 56W. Li, L. Ye, S. Li, H. Yao, H. Ade, J. Hou, Adv. Mater. 2018, 30, 1707170. 10.1002/adma.201707170 PubMedWeb of Science®Google Scholar 57C. Li, J. Zhou, J. Song, J. Xu, H. Zhang, X. Zhang, J. Guo, L. Zhu, D. Wei, G. Han, J. Min, Y. Zhang, Z. Xie, Y. Yi, H. Yan, F. Gao, F. Liu, Y. Sun, Nat. Energy 2021, 6, 605. 10.1038/s41560-021-00820-x CASWeb of Science®Google Scholar 58Z. Luo, T. Liu, R. Ma, Y. Xiao, L. Zhan, G. Zhang, H. Sun, F. Ni, G. Chai, J. Wang, C. Zhong, Y. Zou, X. Guo, X. Lu, H. Chen, H. Yan, C. Yang, Adv. Mater. 2020, 32, 2005942. 10.1002/adma.202005942 CASWeb of Science®Google Scholar 59L. Ma, S. Zhang, J. Zhu, J. Wang, J. Ren, J. Zhang, J. Hou, Nat. Commun. 2021, 12, 5093. 10.1038/s41467-021-25394-w CASPubMedWeb of Science®Google Scholar Early ViewOnline Version of Record before inclusion in an issue2314178 ReferencesRelatedInformation
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhangxin完成签到,获得积分20
1秒前
彼得大帝发布了新的文献求助10
2秒前
dd完成签到 ,获得积分10
2秒前
2秒前
苹果白凡完成签到,获得积分10
3秒前
May完成签到 ,获得积分10
4秒前
一棵草完成签到,获得积分10
4秒前
奋斗若风完成签到,获得积分10
6秒前
52Hz的鲸完成签到,获得积分10
7秒前
AMENG完成签到,获得积分10
8秒前
小趴蔡完成签到,获得积分10
8秒前
9秒前
ggkx完成签到,获得积分10
9秒前
Owen应助清风采纳,获得10
9秒前
y彤完成签到,获得积分10
11秒前
11秒前
111完成签到,获得积分10
11秒前
Morry发布了新的文献求助10
12秒前
12秒前
微风打了烊完成签到 ,获得积分10
12秒前
优秀的半双完成签到,获得积分10
13秒前
郑万恶完成签到 ,获得积分10
13秒前
zorro3574发布了新的文献求助10
16秒前
16秒前
邵初蓝完成签到,获得积分20
21秒前
lcj2022完成签到,获得积分20
22秒前
CodeCraft应助dududu采纳,获得10
22秒前
Shirley完成签到,获得积分10
23秒前
cathy-w完成签到,获得积分10
23秒前
pass完成签到,获得积分10
24秒前
简单的思菱完成签到 ,获得积分10
24秒前
26秒前
zorro3574发布了新的文献求助10
28秒前
工藤新一完成签到 ,获得积分10
29秒前
roclie完成签到 ,获得积分10
29秒前
Morry完成签到,获得积分10
29秒前
像猫的狗完成签到 ,获得积分10
30秒前
顺心冬易完成签到,获得积分10
31秒前
苯环完成签到 ,获得积分10
31秒前
天天快乐应助Inoron采纳,获得10
32秒前
高分求助中
请在求助之前详细阅读求助说明!!!! 20000
Sphäroguß als Werkstoff für Behälter zur Beförderung, Zwischen- und Endlagerung radioaktiver Stoffe - Untersuchung zu alternativen Eignungsnachweisen: Zusammenfassender Abschlußbericht 1500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 1000
Yuwu Song, Biographical Dictionary of the People's Republic of China 700
[Lambert-Eaton syndrome without calcium channel autoantibodies] 520
The Three Stars Each: The Astrolabes and Related Texts 500
A radiographic standard of reference for the growing knee 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2469134
求助须知:如何正确求助?哪些是违规求助? 2136292
关于积分的说明 5443194
捐赠科研通 1860892
什么是DOI,文献DOI怎么找? 925496
版权声明 562694
科研通“疑难数据库(出版商)”最低求助积分说明 495095