Volatile Solid‐Assisted Molecular Assembly Enables Eco‐Friendly Processed Organic Photovoltaic Cells with High Efficiency and Photostability

材料科学 环境友好型 有机太阳能电池 化学工程 能量转换效率 光伏系统 涂层 溶剂 聚苯乙烯 分子 纳米技术 聚合物 有机化学 光电子学 复合材料 生态学 化学 工程类 生物
作者
Lei Xu,Yaomeng Xiong,Sunsun Li,Wenchao Zhao,Jianqi Zhang,Chunyang Miao,Yuyang Zhang,Tao Zhang,Junjiang Wu,Shaoqing Zhang,Qiming Peng,Zhen Wang,Long Ye,Jianhui Hou,Jianpu Wang
出处
期刊:Advanced Functional Materials [Wiley]
卷期号:34 (17) 被引量:4
标识
DOI:10.1002/adfm.202314178
摘要

Advanced Functional MaterialsEarly View 2314178 Research Article Volatile Solid-Assisted Molecular Assembly Enables Eco-Friendly Processed Organic Photovoltaic Cells with High Efficiency and Photostability Lei Xu, Lei Xu Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, 211816 ChinaSearch for more papers by this authorYaomeng Xiong, Yaomeng Xiong Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, 211816 ChinaSearch for more papers by this authorSunsun Li, Corresponding Author Sunsun Li [email protected] Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, 211816 China E-mail: [email protected]; [email protected]Search for more papers by this authorWenchao Zhao, Wenchao Zhao Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037 ChinaSearch for more papers by this authorJianqi Zhang, Jianqi Zhang Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190 ChinaSearch for more papers by this authorChunyang Miao, Chunyang Miao Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, 211816 ChinaSearch for more papers by this authorYuyang Zhang, Yuyang Zhang Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, 211816 ChinaSearch for more papers by this authorTao Zhang, Tao Zhang State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 ChinaSearch for more papers by this authorJunjiang Wu, Junjiang Wu School of Materials Science and Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin, 300350 ChinaSearch for more papers by this authorShaoqing Zhang, Shaoqing Zhang State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 ChinaSearch for more papers by this authorQiming Peng, Qiming Peng Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, 211816 ChinaSearch for more papers by this authorZhen Wang, Zhen Wang Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, 211816 ChinaSearch for more papers by this authorLong Ye, Long Ye School of Materials Science and Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin, 300350 ChinaSearch for more papers by this authorJianhui Hou, Jianhui Hou State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 ChinaSearch for more papers by this authorJianpu Wang, Corresponding Author Jianpu Wang [email protected] orcid.org/0000-0002-2158-8689 Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, 211816 China Changzhou University, 21 Middle Gehu Road, Changzhou, 213164 China E-mail: [email protected]; [email protected]Search for more papers by this author Lei Xu, Lei Xu Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, 211816 ChinaSearch for more papers by this authorYaomeng Xiong, Yaomeng Xiong Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, 211816 ChinaSearch for more papers by this authorSunsun Li, Corresponding Author Sunsun Li [email protected] Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, 211816 China E-mail: [email protected]; [email protected]Search for more papers by this authorWenchao Zhao, Wenchao Zhao Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037 ChinaSearch for more papers by this authorJianqi Zhang, Jianqi Zhang Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190 ChinaSearch for more papers by this authorChunyang Miao, Chunyang Miao Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, 211816 ChinaSearch for more papers by this authorYuyang Zhang, Yuyang Zhang Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, 211816 ChinaSearch for more papers by this authorTao Zhang, Tao Zhang State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 ChinaSearch for more papers by this authorJunjiang Wu, Junjiang Wu School of Materials Science and Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin, 300350 ChinaSearch for more papers by this authorShaoqing Zhang, Shaoqing Zhang State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 ChinaSearch for more papers by this authorQiming Peng, Qiming Peng Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, 211816 ChinaSearch for more papers by this authorZhen Wang, Zhen Wang Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, 211816 ChinaSearch for more papers by this authorLong Ye, Long Ye School of Materials Science and Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin, 300350 ChinaSearch for more papers by this authorJianhui Hou, Jianhui Hou State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 ChinaSearch for more papers by this authorJianpu Wang, Corresponding Author Jianpu Wang [email protected] orcid.org/0000-0002-2158-8689 Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, 211816 China Changzhou University, 21 Middle Gehu Road, Changzhou, 213164 China E-mail: [email protected]; [email protected]Search for more papers by this author First published: 04 January 2024 https://doi.org/10.1002/adfm.202314178Read the full textAboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Abstract Achieving environmentally friendly solvent-processed high-performance organic photovoltaic cells (OPVs) is a crucial step toward their commercialization. Currently, OPVs with competitive efficiencies rely heavily on harmful halogenated solvent additives. Herein, the green and low-cost 9-fluorenone (9-FL) is employed as a solid additive. By using the o-xylene/9-FL solvent system, the PM6:BTP-eC9-based devices deliver power-conversion efficiencies of 18.6% and 17.9% via spin-coating and blade-coating respectively, outperforming all PM6:Y-series binary devices with green solvents. It is found that the addition of 9-FL can regulate the molecular assembly of both PM6 and BTP-eC9 in film-formation (molecule-level mixing) and post-annealing (thermal-assisted molecular reorganization with additive volatilization) stages, so as to optimize the blend morphology. As a result, the charge transport ability of donor and acceptor phases are simultaneously enhanced, and the trap-assisted recombination is reduced, which contributes to the higher short-circuit current density and fill factor. Moreover, the generation of photo-induced traps is significantly suppressed, resulting in improved stability under illumination. It is further demonstrated the excellent universality of 9-FL in various photoactive systems, making it a promising strategy to advance the development of eco-friendly OPVs. Conflict of Interest The authors declare no conflict of interest. Open Research Data Availability Statement The data that support the findings of this study are available from the corresponding author upon reasonable request. Supporting Information Filename Description adfm202314178-sup-0001-SuppMat.pdf2.2 MB Supporting Information adfm202314178-sup-0002-csv.zip1.3 KB Supporting Information Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article. References 1F. C. Krebs, N. Espinosa, M. Hösel, R. R. Søndergaard, M. Jørgensen, Adv. Mater. 2014, 26, 29. 10.1002/adma.201302031 CASPubMedWeb of Science®Google Scholar 2G. Zhang, F. R. Lin, F. Qi, T. Heumüller, A. Distler, H.-J. Egelhaaf, N. Li, P. C. Y. Chow, C. J. Brabec, A. K.-Y. Jen, H.-L. Yip, Chem. Rev. 2022, 122, 14180. 10.1021/acs.chemrev.1c00955 CASPubMedWeb of Science®Google Scholar 3Y. Li, G. Xu, C. Cui, Y. Li, Adv. Energy Mater. 2018, 8, 1701791. 10.1002/aenm.201701791 Web of Science®Google Scholar 4H. Lu, W. Liu, G. Ran, Z. Liang, H. Li, N. Wei, H. Wu, Z. Ma, Y. Liu, W. Zhang, X. Xu, Z. Bo, Angew. Chem., Int. Ed. 2023, 135, 202314420. 10.1002/ange.202314420 Google Scholar 5L. Zhu, M. Zhang, J. Xu, C. Li, J. Yan, G. Zhou, W. Zhong, T. Hao, J. Song, X. Xue, Z. Zhou, R. Zeng, H. Zhu, C.-C. Chen, R. C. I. Mackenzie, Y. Zou, J. Nelson, Y. Zhang, Y. Sun, F. Liu, Nat. Mater. 2022, 21, 656. 10.1038/s41563-022-01244-y CASPubMedWeb of Science®Google Scholar 6Z. Chen, J. Zhu, D. Yang, W. Song, J. Shi, J. Ge, Y. Guo, X. Tong, F. Chen, Z. Ge, Energy Environ. Sci. 2023, 16, 3119. 10.1039/D3EE01164J CASWeb of Science®Google Scholar 7Z. Zheng, J. Wang, P. Bi, J. Ren, Y. Wang, Y. Yang, X. Liu, S. Zhang, J. Hou, Joule 2022, 6, 171. 10.1016/j.joule.2021.12.017 CASWeb of Science®Google Scholar 8X. Xu, W. Jing, H. Meng, Y. Guo, L. Yu, R. Li, Q. Peng, Adv. Mater. 2023, 35, 2208997. 10.1002/adma.202208997 CASPubMedWeb of Science®Google Scholar 9M. Zhang, B. Chang, R. Zhang, S. Li, X. Liu, L. Zeng, Q. Chen, L. Wang, L. Yang, H. Wang, J. Liu, F. Gao, Z.-G. Zhang, Adv. Mater. 2023, https://doi.org/10.1002/adma.202308606. 10.1002/adma.202308606 Google Scholar 10C. He, Y. Pan, Y. Ouyang, Q. Shen, Y. Gao, K. Yan, J. Fang, Y. Chen, C.-Q. Ma, J. Min, C. Zhang, L. Zuo, H. Chen, Energy Environ. Sci. 2022, 15, 2537. 10.1039/D2EE00595F CASWeb of Science®Google Scholar 11R. Sun, Y. Wu, X. Yang, Y. Gao, Z. Chen, K. Li, J. Qiao, T. Wang, J. Guo, C. Liu, X. Hao, H. Zhu, J. Min, Adv. Mater. 2022, 34, 2110147. 10.1002/adma.202110147 CASPubMedWeb of Science®Google Scholar 12Z. Yao, X. Cao, X. Bi, T. He, Y. Li, X. Jia, H. Liang, Y. Guo, G. Long, B. Kan, C. Li, X. Wan, Y. Chen, Angew. Chem., Int. Ed. 2023, 62, 202312630. 10.1002/anie.202312630 CASPubMedGoogle Scholar 13Z. Jia, Q. Ma, Z. Chen, L. Meng, N. Jain, I. Angunawela, S. Qin, X. Kong, X. Li, Y. Yang, H. Zhu, H. Ade, F. Gao, Y. Li, Nat. Commun. 2023, 14, 1236. 10.1038/s41467-023-36917-y CASPubMedWeb of Science®Google Scholar 14S. Lee, D. Jeong, C. Kim, C. Lee, H. Kang, H. Y. Woo, B. J. Kim, ACS Nano 2020, 14, 14493. 10.1021/acsnano.0c07488 CASPubMedWeb of Science®Google Scholar 15H. Li, S. Liu, X. Wu, S. Yao, X. Hu, Y. Chen, Energy Environ. Sci. 2023, 16, 76. 10.1039/D2EE03246E CASWeb of Science®Google Scholar 16C. Yang, M. Jiang, S. Wang, B. Zhang, P. Mao, H. Y. Woo, F. Zhang, J.-L. Wang, Q. An, Adv. Mater. 2023, 2305356. 10.1002/adma.202305356 Google Scholar 17M. Sun, K.-N. Zhang, J.-W. Qiao, L.-H. Wang, M. Li, P. Lu, W. Qin, Z. Xiao, L. Zhang, X.-T. Hao, L. Ding, X.-Y. Du, Adv. Energy Mater. 2023, 13, 2203465. 10.1002/aenm.202203465 CASWeb of Science®Google Scholar 18R. Ma, X. Jiang, J. Fu, T. Zhu, C. Yan, K. Wu, P. Müller-Buschbaum, G. Li, Energy Environ. Sci. 2023, 12, 15. Google Scholar 19J. Wang, Y. Cui, Y. Xu, K. Xian, P. Bi, Z. Chen, K. Zhou, L. Ma, T. Zhang, Y. Yang, Y. Zu, H. Yao, X. Hao, L. Ye, J. Hou, Adv. Mater. 2022, 34, 2205009. 10.1002/adma.202205009 CASPubMedWeb of Science®Google Scholar 20J. Liu, J. Deng, Y. Zhu, X. Geng, L. Zhang, S. Y. Jeong, D. Zhou, H. Y. Woo, D. Chen, F. Wu, L. Chen, Adv. Mater. 2023, 35, 2208008. 10.1002/adma.202208008 CASWeb of Science®Google Scholar 21H. Zhuo, X. Li, J. Zhang, S. Qin, J. Guo, R. Zhou, X. Jiang, X. Wu, Z. Chen, J. Li, L. Meng, Y. Li, Angew. Chem., Int. Ed. 2023, 62, 202303551. 10.1002/anie.202303551 CASPubMedWeb of Science®Google Scholar 22J. Hai, L. Li, Y. Song, X. Liu, X. Shi, Z. Wang, X. Chen, Z. Lu, X. Li, Y. Pang, J. Yu, H. Hu, S. Chen, Chem. Eng. J. 2023, 462, 142178. 10.1016/j.cej.2023.142178 CASGoogle Scholar 23J. Yuan, Y. Zhang, L. Zhou, G. Zhang, H.-L. Yip, T.-K. Lau, X. Lu, C. Zhu, H. Peng, P. A. Johnson, M. Leclerc, Y. Cao, J. Ulanski, Y. Li, Y. Zou, Joule 2019, 3, 1140. 10.1016/j.joule.2019.01.004 CASWeb of Science®Google Scholar 24C. Cui, Y. Li, Aggregate 2021, 2, e31. 10.1002/agt2.31 CASWeb of Science®Google Scholar 25B. J. Tremolet De Villers, K. A. O'hara, D. P. Ostrowski, P. H. Biddle, S. E. Shaheen, M. L. Chabinyc, D. C. Olson, N. Kopidakis, Chem. Mater. 2016, 28, 876. 10.1021/acs.chemmater.5b04346 CASWeb of Science®Google Scholar 26L. Zhong, S.-H. Kang, J. Oh, S. Jung, Y. Cho, G. Park, S. Lee, S.-J. Yoon, H. Park, C. Yang, Adv. Funct. Mater. 2022, 32, 2201080. 10.1002/adfm.202201080 CASWeb of Science®Google Scholar 27J. Wang, Y. Wang, P. Bi, Z. Chen, J. Qiao, J. Li, W. Wang, Z. Zheng, S. Zhang, X. Hao, J. Hou, Adv. Mater. 2023, 35, 2301583. 10.1002/adma.202301583 CASPubMedWeb of Science®Google Scholar 28M. Xiao, L. Liu, Y. Meng, B. Fan, W. Su, C. Jin, L. Liao, F. Yi, C. Xu, R. Zhang, A. K.-Y. Jen, W. Ma, Q. Fan, Sci. China Chem. 2023, 66, 1500. 10.1007/s11426-023-1564-8 CASWeb of Science®Google Scholar 29J. Fu, P. W. K. Fong, H. Liu, C.-S. Huang, X. Lu, S. Lu, M. Abdelsamie, T. Kodalle, C. M. Sutter-Fella, Y. Yang, G. Li, Nat. Commun. 2023, 14, 1760. 10.1038/s41467-023-37526-5 CASPubMedWeb of Science®Google Scholar 30X. Song, H. Xu, X. Jiang, S. Gao, X. Zhou, S. Xu, J. Li, J. Yu, W. Liu, W. Zhu, P. Müller-Buschbaum, Energy Environ. Sci. 2023, 12, 15. Google Scholar 31L. Kong, Z. Zhang, N. Zhao, Z. Cai, J. Zhang, M. Luo, X. Wang, M. Chen, W. Zhang, L. Zhang, Z. Wei, J. Chen, Adv. Energy Mater. 2023, 13, 2300763. 10.1002/aenm.202300763 CASGoogle Scholar 32R. Yu, H. Yao, L. Hong, Y. Qin, J. Zhu, Y. Cui, S. Li, J. Hou, Nat. Commun. 2018, 9, 4645. 10.1038/s41467-018-07017-z PubMedWeb of Science®Google Scholar 33Q. He, W. Sheng, M. Zhang, G. Xu, P. Zhu, H. Zhang, Z. Yao, F. Gao, F. Liu, X. Liao, Y. Chen, Adv. Energy Mater. 2021, 11, 2003390. 10.1002/aenm.202003390 CASWeb of Science®Google Scholar 34X. Xia, L. Mei, C. He, Z. Chen, N. Yao, M. Qin, R. Sun, Z. Zhang, Y. Pan, Y. Xiao, Y. Lin, J. Min, F. Zhang, H. Zhu, J.-L. Bredas, H. Chen, X.-K. Chen, X. Lu, J. Mater. Chem. A 2023, 11, 21895. 10.1039/D3TA05177C CASWeb of Science®Google Scholar 35Y. Cui, H. Yao, J. Zhang, K. Xian, T. Zhang, L. Hong, Y. Wang, Y. Xu, K. Ma, C. An, C. He, Z. Wei, F. Gao, J. Hou, Adv. Mater. 2020, 32, 1908205. 10.1002/adma.201908205 CASPubMedWeb of Science®Google Scholar 36S. Patel, B. Rathod, S. Regu, S. Chak, A. Shard, Chemistry Select 2020, 5, 10673. 10.1002/slct.202002695 CASGoogle Scholar 37Y. Xie, H. S. Ryu, L. Han, Y. Cai, X. Duan, D. Wei, H. Y. Woo, Y. Sun, Sci. China Chem. 2021, 64, 2161. 10.1007/s11426-021-1121-y CASWeb of Science®Google Scholar 38Z. He, C. Zhong, X. Huang, W.-Y. Wong, H. Wu, L. Chen, S. Su, Y. Cao, Adv. Mater. 2011, 23, 4636. 10.1002/adma.201103006 CASPubMedWeb of Science®Google Scholar 39J.-L. Wu, F.-C. Chen, Y.-S. Hsiao, F.-C. Chien, P. Chen, C.-H. Kuo, M. H. Huang, C.-S. Hsu, ACS Nano 2011, 5, 959. 10.1021/nn102295p CASPubMedWeb of Science®Google Scholar 40V. Gupta, A. K. K. Kyaw, D. H. Wang, S. Chand, G. C. Bazan, A. J. Heeger, Sci. Rep. 2013, 3, 1965. 10.1038/srep01965 PubMedWeb of Science®Google Scholar 41S. Guan, Y. Li, K. Yan, W. Fu, L. Zuo, H. Chen, Adv. Mater. 2022, 34, 2205844. 10.1002/adma.202205844 CASPubMedWeb of Science®Google Scholar 42Y. Liu, K. Zhou, X. Zhou, W. Xue, Z. Bi, H. Wu, Z. Ma, W. Ma, Macromol. Rapid Commun. 2022, 43, 2100871. 10.1002/marc.202100871 CASWeb of Science®Google Scholar 43H. Li, Y. Zhao, J. Fang, X. Zhu, B. Xia, K. Lu, Z. Wang, J. Zhang, X. Guo, Z. Wei, Adv. Energy Mater. 2018, 8, 1702377. 10.1002/aenm.201702377 Web of Science®Google Scholar 44W. Li, K. H. Hendriks, A. Furlan, W. S. C. Roelofs, S. C. J. Meskers, M. M. Wienk, R. A. J. Janssen, Adv. Mater. 2014, 26, 1565. 10.1002/adma.201304360 CASPubMedWeb of Science®Google Scholar 45T. Shan, Y. Zhang, Y. Wang, Z. Xie, Q. Wei, J. Xu, M. Zhang, C. Wang, Q. Bao, X. Wang, C.-C. Chen, J. Huang, Q. Chen, F. Liu, L. Chen, H. Zhong, Nat. Commun. 2020, 11, 5585. 10.1038/s41467-020-19429-x CASPubMedWeb of Science®Google Scholar 46M. Zhang, L. Zhu, T. Hao, G. Zhou, C. Qiu, Z. Zhao, N. Hartmann, B. Xiao, Y. Zou, W. Feng, H. Zhu, M. Zhang, Y. Zhang, Y. Li, T. P. Russell, F. Liu, Adv. Mater. 2021, 33, 2007177. 10.1002/adma.202007177 CASPubMedWeb of Science®Google Scholar 47T. Xia, Y. Cai, H. Fu, Y. Sun, Sci. China Chem. 2019, 62, 662. 10.1007/s11426-019-9478-2 CASWeb of Science®Google Scholar 48J. Song, Y. Li, Y. Cai, R. Zhang, S. Wang, J. Xin, L. Han, D. Wei, W. Ma, F. Gao, Y. Sun, Matter 2022, 5, 4047. 10.1016/j.matt.2022.08.011 CASGoogle Scholar 49L. Di Mario, D. Garcia Romero, M. J. Pieters, F. Eller, C. Zhu, G. Bongiovanni, E. M. Herzig, A. Mura, M. A. Loi, J. Mater. Chem. A 2023, 11, 2419. 10.1039/D2TA08603D CASPubMedWeb of Science®Google Scholar 50S. Rasool, J. W. Kim, H. W. Cho, Y.-J. Kim, D. C. Lee, C. B. Park, W. Lee, O.-H. Kwon, S. Cho, J. Y. Kim, Adv. Energy Mater. 2023, 13, 2203452. 10.1002/aenm.202203452 CASWeb of Science®Google Scholar 51Z. Zhong, S. Chen, J. Zhao, J. Xie, K. Zhang, T. Jia, C. Zhu, J. Jing, Y. Liang, L. Hong, S. Zhu, D. Ma, F. Huang, Adv. Energy Mater. 2023, 13, 2302273. 10.1002/aenm.202302273 CASGoogle Scholar 52Y. Wang, M. J. Jafari, N. Wang, D. Qian, F. Zhang, T. Ederth, E. Moons, J. Wang, O. Inganäs, W. Huang, F. Gao, J. Mater. Chem. A 2018, 6, 11884. 10.1039/C8TA03112F CASWeb of Science®Google Scholar 53L. Ma, S. Zhang, H. Yao, Y. Xu, J. Wang, Y. Zu, J. Hou, ACS Appl. Mater. Interfaces 2020, 12, 18777. 10.1021/acsami.0c05172 CASPubMedWeb of Science®Google Scholar 54T. Heumueller, W. R. Mateker, I. T. Sachs-Quintana, K. Vandewal, J. A. Bartelt, T. M. Burke, T. Ameri, C. J. Brabec, M. D. Mcgehee, Energy Environ. Sci. 2014, 7, 2974. 10.1039/C4EE01842G CASWeb of Science®Google Scholar 55S. Li, L. Ye, W. Zhao, S. Zhang, S. Mukherjee, H. Ade, J. Hou, Adv. Mater. 2016, 28, 9423. 10.1002/adma.201602776 CASPubMedWeb of Science®Google Scholar 56W. Li, L. Ye, S. Li, H. Yao, H. Ade, J. Hou, Adv. Mater. 2018, 30, 1707170. 10.1002/adma.201707170 PubMedWeb of Science®Google Scholar 57C. Li, J. Zhou, J. Song, J. Xu, H. Zhang, X. Zhang, J. Guo, L. Zhu, D. Wei, G. Han, J. Min, Y. Zhang, Z. Xie, Y. Yi, H. Yan, F. Gao, F. Liu, Y. Sun, Nat. Energy 2021, 6, 605. 10.1038/s41560-021-00820-x CASWeb of Science®Google Scholar 58Z. Luo, T. Liu, R. Ma, Y. Xiao, L. Zhan, G. Zhang, H. Sun, F. Ni, G. Chai, J. Wang, C. Zhong, Y. Zou, X. Guo, X. Lu, H. Chen, H. Yan, C. Yang, Adv. Mater. 2020, 32, 2005942. 10.1002/adma.202005942 CASWeb of Science®Google Scholar 59L. Ma, S. Zhang, J. Zhu, J. Wang, J. Ren, J. Zhang, J. Hou, Nat. Commun. 2021, 12, 5093. 10.1038/s41467-021-25394-w CASPubMedWeb of Science®Google Scholar Early ViewOnline Version of Record before inclusion in an issue2314178 ReferencesRelatedInformation
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
灵感大王喵完成签到 ,获得积分10
1秒前
乐乐妈完成签到,获得积分10
1秒前
1秒前
白日梦小说家完成签到 ,获得积分10
5秒前
yuan完成签到,获得积分10
5秒前
美丽的仙人掌完成签到,获得积分10
6秒前
乔巴完成签到,获得积分10
7秒前
帆帆帆完成签到 ,获得积分10
8秒前
去微软完成签到,获得积分10
8秒前
负责的寒梅完成签到 ,获得积分10
9秒前
奋斗的蓝蜗牛完成签到,获得积分10
9秒前
lily完成签到,获得积分10
11秒前
小亮哈哈完成签到,获得积分10
11秒前
林小鱼完成签到,获得积分10
11秒前
包容的映天完成签到 ,获得积分10
13秒前
爱可可月完成签到,获得积分10
16秒前
有有完成签到 ,获得积分10
16秒前
852应助一杯美事采纳,获得10
19秒前
大卫在分享完成签到,获得积分0
19秒前
一拳一个小欧阳完成签到 ,获得积分10
21秒前
bio-tang完成签到,获得积分10
22秒前
wannna完成签到,获得积分10
25秒前
彩色橘子完成签到 ,获得积分10
26秒前
子羽完成签到,获得积分10
27秒前
干净的时光应助许宗菊采纳,获得10
27秒前
善良起眸完成签到 ,获得积分10
29秒前
文安完成签到,获得积分10
29秒前
29秒前
苏菲完成签到 ,获得积分10
30秒前
爆米花应助何晓俊采纳,获得10
30秒前
31秒前
小羊同学完成签到,获得积分10
32秒前
吱吱发布了新的文献求助10
33秒前
大地完成签到,获得积分10
33秒前
张张同学完成签到,获得积分10
34秒前
junzpeng发布了新的文献求助10
35秒前
一杯美事发布了新的文献求助10
36秒前
37秒前
吴大语完成签到,获得积分10
38秒前
高分求助中
좌파는 어떻게 좌파가 됐나:한국 급진노동운동의 형성과 궤적 2500
Sustainability in Tides Chemistry 1500
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Cognitive linguistics critical concepts in linguistics 800
Threaded Harmony: A Sustainable Approach to Fashion 799
Livre et militantisme : La Cité éditeur 1958-1967 500
氟盐冷却高温堆非能动余热排出性能及安全分析研究 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3052675
求助须知:如何正确求助?哪些是违规求助? 2709926
关于积分的说明 7418483
捐赠科研通 2354527
什么是DOI,文献DOI怎么找? 1246159
科研通“疑难数据库(出版商)”最低求助积分说明 605951
版权声明 595921