The Use of Deep Learning Software in the Detection of Voice Disorders: A Systematic Review

计算机科学 软件 心理学 人工智能 语音识别 程序设计语言
作者
Joshua Barlow,Zara Sragi,Gabriel Rivera‐Rivera,Abdurrahman Al‐Awady,Ümit Daşdöğen,Mark S. Courey,Diana N. Kirke
出处
期刊:Otolaryngology-Head and Neck Surgery [SAGE]
卷期号:170 (6): 1531-1543 被引量:18
标识
DOI:10.1002/ohn.636
摘要

Abstract Objective To summarize the use of deep learning in the detection of voice disorders using acoustic and laryngoscopic input, compare specific neural networks in terms of accuracy, and assess their effectiveness compared to expert clinical visual examination. Data Sources Embase, MEDLINE, and Cochrane Central. Review Methods Databases were screened through November 11, 2023 for relevant studies. The inclusion criteria required studies to utilize a specified deep learning method, use laryngoscopy or acoustic input, and measure accuracy of binary classification between healthy patients and those with voice disorders. Results Thirty‐four studies met the inclusion criteria, with 18 focusing on voice analysis, 15 on imaging analysis, and 1 both. Across the 18 acoustic studies, 21 programs were used for identification of organic and functional voice disorders. These technologies included 10 convolutional neural networks (CNNs), 6 multilayer perceptrons (MLPs), and 5 other neural networks. The binary classification systems yielded a mean accuracy of 89.0% overall, including 93.7% for MLP programs and 84.5% for CNNs. Among the 15 imaging analysis studies, a total of 23 programs were utilized, resulting in a mean accuracy of 91.3%. Specifically, the twenty CNNs achieved a mean accuracy of 92.6% compared to 83.0% for the 3 MLPs. Conclusion Deep learning models were shown to be highly accurate in the detection of voice pathology, with CNNs most effective for assessing laryngoscopy images and MLPs most effective for assessing acoustic input. While deep learning methods outperformed expert clinical exam in limited comparisons, further studies integrating external validation are necessary.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
嗯哼完成签到,获得积分10
2秒前
cy完成签到,获得积分10
2秒前
科研通AI2S应助king采纳,获得10
3秒前
伊斯坦堡的喵完成签到,获得积分20
3秒前
量子星尘发布了新的文献求助10
4秒前
高冰冰完成签到 ,获得积分10
6秒前
丰知然应助飞快的孱采纳,获得10
7秒前
yaosan完成签到,获得积分10
7秒前
勤奋方盒给勤奋方盒的求助进行了留言
7秒前
hhh完成签到,获得积分10
7秒前
曹操的曹发布了新的文献求助10
10秒前
ahhhh完成签到,获得积分10
11秒前
11秒前
12秒前
13秒前
14秒前
FashionBoy应助tguczf采纳,获得10
15秒前
lzxucn完成签到,获得积分10
16秒前
ahhhh发布了新的文献求助10
16秒前
贪玩的秋柔应助rui采纳,获得10
16秒前
yz有理完成签到,获得积分10
16秒前
嘟噜噜发布了新的文献求助10
17秒前
lf完成签到,获得积分10
17秒前
17秒前
17秒前
现代小丸子完成签到 ,获得积分10
17秒前
清欢发布了新的文献求助10
18秒前
元谷雪发布了新的文献求助10
18秒前
hhhm完成签到 ,获得积分10
20秒前
吃的完成签到,获得积分10
20秒前
Ehan发布了新的文献求助10
20秒前
大饼卷肉完成签到,获得积分10
21秒前
21秒前
22秒前
Mireia完成签到,获得积分10
25秒前
情怀应助Elite采纳,获得30
25秒前
Lincoln发布了新的文献求助10
26秒前
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5604302
求助须知:如何正确求助?哪些是违规求助? 4689045
关于积分的说明 14857600
捐赠科研通 4697314
什么是DOI,文献DOI怎么找? 2541233
邀请新用户注册赠送积分活动 1507355
关于科研通互助平台的介绍 1471867