已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

In-mold condition-centered and explainable artificial intelligence-based (IMC-XAI) process optimization for injection molding

模具 过程(计算) 质量(理念) 计算机科学 造型(装饰) 工程制图 机械工程 数学优化 数学 工程类 材料科学 复合材料 认识论 操作系统 哲学
作者
Jinsu Gim,Chung‐Yin Lin,Lih‐Sheng Turng
出处
期刊:Journal of Manufacturing Systems [Elsevier BV]
卷期号:72: 196-213 被引量:18
标识
DOI:10.1016/j.jmsy.2023.11.013
摘要

This paper proposes a novel injection molding process optimization method based on the in-mold condition (IMC) and interpreted influence of in-mold condition features on part quality. In-mold condition is crucial for process optimization because it represents the actual process condition in the cavity where the polymer material is formed into the final part shape. Traditionally, the analysis of in-mold condition heavily depends on domain knowledge and insight, which introduces bias and inconsistency in in-mold condition-based process optimization. This study aims at developing an intelligent, objective, and robust process optimization method that concentrates on the highly influential in-mold condition features concerning part-quality, as interpreted by explainable artificial intelligence (XAI). In this in-mold condition-centered modeling approach, the input process parameters and final part quality were associated with the in-mold condition, with their corresponding relationship modeled by two machine learning (ML) models, respectively. The effect of in-mold condition on part quality was interpreted by applying XAI on the ML model that describes the relationship between in-mold condition and part quality. Features in the in-mold condition profiles that have high influence on part quality are given more weight in the search for diverse in-mold conditions that satisfy multiple part-quality objectives. A feasibility check has been implemented to identify, among those potential in-mold conditions, the optimal one that is physically feasible based on the ML model that governs the relationship between the process parameters and in-mold condition. The proposed method not only pinpoints better optimized process parameters than the conventional approach that omits the in-mold condition and only considers the direct relationship between the process parameters and part quality, but also reveals the possibility of further quality improvement. The optimization tool of the proposed method can be found on an online interactive platform https://imc-xai-injmold-optimization-4e26a3e3ef41.herokuapp.com/, which was created to facilitate further research based on the proposed approach. In addition to process optimization, this approach can effectively contribute to intelligent manufacturing management and Industry 4.0.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zoe_zzz完成签到,获得积分10
刚刚
Eve完成签到,获得积分20
2秒前
鑫仔发布了新的文献求助10
3秒前
石子发布了新的文献求助10
3秒前
4秒前
4秒前
RR完成签到,获得积分10
6秒前
444完成签到,获得积分20
6秒前
思源应助song采纳,获得10
7秒前
韭菜仔完成签到,获得积分10
8秒前
八杯水发布了新的文献求助10
8秒前
朱文韬发布了新的文献求助10
9秒前
11秒前
852应助科研通管家采纳,获得10
13秒前
烟花应助科研通管家采纳,获得10
13秒前
桐桐应助科研通管家采纳,获得10
13秒前
SciGPT应助科研通管家采纳,获得10
13秒前
李健应助科研通管家采纳,获得10
13秒前
李爱国应助科研通管家采纳,获得10
13秒前
RC_Wang应助科研通管家采纳,获得10
13秒前
RC_Wang应助科研通管家采纳,获得10
13秒前
13秒前
13秒前
13秒前
13秒前
爆米花应助flymove采纳,获得10
14秒前
15秒前
小丁同学应助joy采纳,获得10
17秒前
马良完成签到 ,获得积分10
20秒前
21秒前
寒冷的绿真完成签到 ,获得积分10
22秒前
guojingjing发布了新的文献求助10
23秒前
Liuzihao完成签到 ,获得积分10
27秒前
28秒前
28秒前
小小鱼发布了新的文献求助10
32秒前
LaKI发布了新的文献求助10
37秒前
英姑应助CY采纳,获得10
38秒前
neilphilosci完成签到 ,获得积分10
39秒前
红色流星完成签到 ,获得积分10
41秒前
高分求助中
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Quantum Computing for Quantum Chemistry 500
Thermal Expansion of Solids (CINDAS Data Series on Material Properties, v. I-4) 470
Canon of Insolation and the Ice-age Problem 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3900084
求助须知:如何正确求助?哪些是违规求助? 3444706
关于积分的说明 10836420
捐赠科研通 3169749
什么是DOI,文献DOI怎么找? 1751219
邀请新用户注册赠送积分活动 846632
科研通“疑难数据库(出版商)”最低求助积分说明 789298