EAIS-Former: An efficient and accurate image segmentation method for fruit leaf diseases

模式识别(心理学) 斑点 人工智能 分割 图像分割 像素 编码器 计算机科学 计算机视觉 植物 生物 操作系统
作者
Jiangwen Lu,Bibo Lu,Wanli Ma,Yang Sun
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:218: 108739-108739 被引量:7
标识
DOI:10.1016/j.compag.2024.108739
摘要

Fruit leaf disease segmentation is an essential foundation for achieving accurate disease diagnosis and identification. However, shadows caused by folded leaves and serrations on leaves can lead to difficulty in extracting edge features, affecting the accuracy of leaf segmentation. In addition, the varying shapes and blurred boundaries of disease spots can further lead to poor segmentation performance of spots. To address the above problems, this work proposes a method called EAIS-Former by combining the advantages of global modeling of Transformer, local processing and positional coding of convolutional neural network (CNN) for accurate segmentation in fruit leaf disease images. Dual scale overlap (DSO) patch embedding is designed to effectively extract multi-scale disease features by dual paths to alleviate omission of lesions. Ultra large convolution (ULC) Transformer block is customized for performing positional encoding and global modeling to efficiently extract global and positional features of leaves and diseases. Skip convolutional local optimization (SCLO) module is proposed to optimize the local detail and edge information and improve the pixel classification ability of the model so that the segmentation results of leaves and spots can be finer and more tiny spots can be extracted. Double layer upsampling (DLU) decoder is built to efficiently fuse the detail information with the semantic information and output the accurate segmentation results of leaves and spots. The experimental results show that the proposed method reach 99.04%, 98.64%, 99.24%, 99.42%, 98.59% and 98.58% intersection over union (IoU) for leaf segmentation on apple rust, pomegranate cercospora spot, mango anthracnose, jamun fungal disease, apple alternaria blotch and apple gray spot datasets, respectively. The IoU of lesion segmentation achieve 94.47%, 94.54%, 83.83%, 86.60%, 89.59% and 88.76%, respectively. In contrast to DeepLabv3+, the accuracy of disease segmentation is raised by 5.25%, 5.15%, 5.55%, 7.64%, 7.04% and 9.35%, respectively. Compared with U-Net, the proposed method improves the accuracy of disease spot segmentation by 4.3%, 4.44%, 5.26%, 9.42%, 5.87% and 6.53% under the six fruit leaf test sets, respectively. In addition, total parameters and FLOPs of the proposed method are only 18.44% and 8.47% of U-Net, respectively. Therefore, this study can provide an efficient and accurate method for the task of fruit leaf disease spot segmentation, which provides a sufficient basis for the accurate analysis of fruit leaves and diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wxy发布了新的文献求助10
刚刚
打打应助科研通管家采纳,获得10
刚刚
李爱国应助科研通管家采纳,获得10
刚刚
刚刚
大个应助科研通管家采纳,获得10
1秒前
1秒前
科目三应助科研通管家采纳,获得10
1秒前
汉堡包应助科研通管家采纳,获得10
1秒前
SYLH应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
1秒前
领导范儿应助科研通管家采纳,获得10
1秒前
wy.he应助国家栋梁采纳,获得20
1秒前
量子星尘发布了新的文献求助10
2秒前
虞无声发布了新的文献求助10
3秒前
3秒前
5秒前
5秒前
6秒前
kls完成签到,获得积分10
7秒前
emmm完成签到,获得积分10
9秒前
英俊的铭应助summertny采纳,获得10
9秒前
9秒前
=Q发布了新的文献求助10
10秒前
11秒前
11秒前
非而者厚应助杨冰采纳,获得10
13秒前
冰魂应助唐白云采纳,获得20
14秒前
15秒前
gabee完成签到 ,获得积分10
15秒前
wgl完成签到,获得积分10
15秒前
16秒前
桐夜完成签到 ,获得积分10
17秒前
Phi.Wang发布了新的文献求助10
17秒前
学白柒完成签到,获得积分10
20秒前
20秒前
量子星尘发布了新的文献求助50
20秒前
wgl发布了新的文献求助10
21秒前
科研通AI5应助黑尼格采纳,获得10
22秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Parametric Random Vibration 800
Building Quantum Computers 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3864457
求助须知:如何正确求助?哪些是违规求助? 3406886
关于积分的说明 10651543
捐赠科研通 3130758
什么是DOI,文献DOI怎么找? 1726577
邀请新用户注册赠送积分活动 831814
科研通“疑难数据库(出版商)”最低求助积分说明 780039