Differentiation of NaCl, NaOH, and β-Phenylethylamine Using Ultraviolet Spectroscopy and Improved Adaptive Artificial Bee Colony Combined with BP-ANN Algorithm

人工蜂群算法 算法 人工神经网络 支持向量机 人工智能 主成分分析 计算机科学 数学 模式识别(心理学)
作者
Angxin Tong,Xiaojun Tang,Haibin Liu,Honghu Gao,Xiaofei Kou,Qiang Zhang
出处
期刊:ACS omega [American Chemical Society]
卷期号:8 (13): 12418-12429 被引量:3
标识
DOI:10.1021/acsomega.3c00271
摘要

The aim of this study is to enhance the classification performance of the back-propagation-artificial neural network (BP-ANN) algorithm for NaCl, NaOH, β-phenylethylamine (PEA), and their mixture, as well as to avoid the defects of the artificial bee colony (ABC) algorithm such as prematurity and local optimization. In this paper, a method that combined an improved adaptive artificial bee colony (IAABC) algorithm and BP-ANN algorithm was proposed. This method improved the ABC algorithm by adding an adaptive local search factor and mutation factor; meanwhile, it can enhance the abilities of the global optimization and local search of the ABC algorithm and avoid prematurity. The extracted score vectors of the principal component of the ultraviolet (UV) spectrum were used as the input variable of the BP-ANN algorithm. The IAABC algorithm was used to optimize the weight and threshold of the BP-ANN algorithm, and the iterative algorithm was repeated until the output accuracy was reached. The output variable was the classification results of NaCl, NaOH, PEA, and the mixture. Meanwhile, the proposed IAABC-BP-ANN algorithm was compared with discriminant analysis (DA), sigmaid-support vector machine (SVM), radial basis function-SVM (RBF-SVM), BP-ANN, and ABC-BP-ANN. Then, the above algorithms were used to classify NaCl, NaOH, PEA, and the mixture, respectively. In the experiment, four indicators, accuracy, recall, precision, and F-score, were used as the evaluation criteria. In addition, the regression equation parameters of the mixture for the testing set were obtained by BP-ANN, ABC-BP-ANN, and IAABC-BP-ANN models. All of the results showed that IAABC-BP-ANN exhibits better performance than other algorithms. Therefore, IAABC-BP-ANN combined with UV spectroscopy is a potential identification tool for the detection of NaCl, NaOH, PEA, and the mixture.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷炫鹏笑发布了新的文献求助10
1秒前
研友_nPb9e8完成签到,获得积分10
1秒前
酷波er应助MeSs采纳,获得10
2秒前
2秒前
2秒前
只A不B应助研友_8oBxrZ采纳,获得30
2秒前
你也爱抽二手烟吗完成签到,获得积分10
2秒前
dox应助YangSY采纳,获得10
3秒前
3秒前
项无极完成签到,获得积分10
4秒前
y_y完成签到,获得积分10
4秒前
暴躁的香旋完成签到,获得积分20
5秒前
5秒前
波波发布了新的文献求助10
6秒前
plasmid完成签到,获得积分10
7秒前
7秒前
Sherry完成签到,获得积分10
8秒前
笨笨的寒天完成签到,获得积分10
9秒前
9秒前
9秒前
zhaoyg发布了新的文献求助10
10秒前
龙哥发布了新的文献求助10
10秒前
qin完成签到 ,获得积分10
11秒前
波波完成签到,获得积分20
11秒前
gggguo发布了新的文献求助10
12秒前
12秒前
sunshine应助Wang采纳,获得10
13秒前
13秒前
whatever举报lgj求助涉嫌违规
13秒前
13秒前
13秒前
15秒前
15秒前
柏觅夏发布了新的文献求助10
15秒前
可爱的函函应助张张采纳,获得10
15秒前
momo完成签到,获得积分10
16秒前
丘比特应助安贝的呐喊采纳,获得10
16秒前
余顺雨发布了新的文献求助10
17秒前
lllm发布了新的文献求助10
17秒前
17秒前
高分求助中
Algorithmic Mathematics in Machine Learning 500
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Fatigue of Materials and Structures 260
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
The Burge and Minnechaduza Clarendonian mammalian faunas of north-central Nebraska 206
An Integrated Solution for Application of Next-Generation Sequencing in Newborn Screening 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3831882
求助须知:如何正确求助?哪些是违规求助? 3374030
关于积分的说明 10483332
捐赠科研通 3093959
什么是DOI,文献DOI怎么找? 1703241
邀请新用户注册赠送积分活动 819322
科研通“疑难数据库(出版商)”最低求助积分说明 771423