已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

PCCT: Progressive Class-Center Triplet Loss for Imbalanced Medical Image Classification

班级(哲学) 计算机科学 排名(信息检索) 一般化 人工智能 阶段(地层学) 机器学习 数学 生物 数学分析 古生物学
作者
Kanghao Chen,Weixian Lei,Ping Hu,Shu Zhao,Wei‐Shi Zheng,Ruixuan Wang
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:27 (4): 2026-2036 被引量:2
标识
DOI:10.1109/jbhi.2023.3240136
摘要

Imbalanced training data in medical image diagnosis is a significant challenge for diagnosing rare diseases. For this purpose, we propose a novel two-stage Progressive Class-Center Triplet (PCCT) framework to overcome the class imbalance issue. In the first stage, PCCT designs a class-balanced triplet loss to coarsely separate distributions of different classes. Triplets are sampled equally for each class at each training iteration, which alleviates the imbalanced data issue and lays solid foundation for the successive stage. In the second stage, PCCT further designs a class-center involved triplet strategy to enable a more compact distribution for each class. The positive and negative samples in each triplet are replaced by their corresponding class centers, which prompts compact class representations and benefits training stability. The idea of class-center involved loss can be extended to the pair-wise ranking loss and the quadruplet loss, which demonstrates the generalization of the proposed framework. Extensive experiments support that the PCCT framework works effectively for medical image classification with imbalanced training images. On four challenging class-imbalanced datasets (two skin datasets Skin7 and Skin 198, one chest X-ray dataset ChestXray-COVID, and one eye dataset Kaggle EyePACs), the proposed approach respectively obtains the mean F1 score 86.20, 65.20, 91.32, and 87.18 over all classes and 81.40, 63.87, 82.62, and 79.09 for rare classes, achieving state-of-the-art performance and outperforming the widely used methods for the class imbalance issue.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
dzjin完成签到,获得积分10
刚刚
1秒前
饼干发布了新的文献求助30
1秒前
2秒前
4秒前
长安某完成签到,获得积分10
4秒前
6秒前
苏苏苏发布了新的文献求助10
8秒前
王俊凯完成签到 ,获得积分10
8秒前
一一完成签到,获得积分10
9秒前
慕青应助sdfsdf采纳,获得10
9秒前
TY完成签到 ,获得积分10
9秒前
10秒前
谷闫完成签到,获得积分10
10秒前
在水一方应助LYT采纳,获得30
10秒前
不会搞科研完成签到,获得积分0
11秒前
长安某发布了新的文献求助10
13秒前
大力小玉完成签到 ,获得积分10
16秒前
mc发布了新的文献求助10
17秒前
小马甲应助漂亮的千万采纳,获得10
19秒前
20秒前
耍酷的白梦完成签到,获得积分10
21秒前
22秒前
24秒前
25秒前
薛雨佳发布了新的文献求助10
26秒前
Alex应助jjiinngggeee采纳,获得30
27秒前
刘zy发布了新的文献求助10
27秒前
小蘑菇应助。。。采纳,获得10
29秒前
荷西发布了新的文献求助10
29秒前
略略略发布了新的文献求助10
30秒前
32秒前
李白白白完成签到,获得积分10
34秒前
科研通AI5应助波恰采纳,获得10
35秒前
谷氨酸完成签到,获得积分10
38秒前
txxxx发布了新的文献求助10
38秒前
39秒前
YUKI完成签到,获得积分10
40秒前
momo发布了新的文献求助30
41秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3792198
求助须知:如何正确求助?哪些是违规求助? 3336436
关于积分的说明 10281070
捐赠科研通 3053210
什么是DOI,文献DOI怎么找? 1675507
邀请新用户注册赠送积分活动 803469
科研通“疑难数据库(出版商)”最低求助积分说明 761429