Tailoring Practically Accessible Polymer/Inorganic Composite Electrolytes for All-Solid-State Lithium Metal Batteries: A Review

阳极 材料科学 锂(药物) 复合数 电解质 陶瓷 能量密度 纳米技术 电化学 阴极 灵活性(工程) 快离子导体 化学 工程物理 复合材料 离子电导率 工程类 电气工程 电极 医学 物理化学 统计 内分泌学 数学
作者
Hongmei Liang,Li Wang,Aiping Wang,Youzhi Song,Yanzhou Wu,Yang Yang,Xiangming He
出处
期刊:Nano-micro Letters [Springer Nature]
卷期号:15 (1): 42-42 被引量:249
标识
DOI:10.1007/s40820-022-00996-1
摘要

Solid-state electrolytes (SSEs) are widely considered the essential components for upcoming rechargeable lithium-ion batteries owing to the potential for great safety and energy density. Among them, polymer solid-state electrolytes (PSEs) are competitive candidates for replacing commercial liquid electrolytes due to their flexibility, shape versatility and easy machinability. Despite the rapid development of PSEs, their practical application still faces obstacles including poor ionic conductivity, narrow electrochemical stable window and inferior mechanical strength. Polymer/inorganic composite electrolytes (PIEs) formed by adding ceramic fillers in PSEs merge the benefits of PSEs and inorganic solid-state electrolytes (ISEs), exhibiting appreciable comprehensive properties due to the abundant interfaces with unique characteristics. Some PIEs are highly compatible with high-voltage cathode and lithium metal anode, which offer desirable access to obtaining lithium metal batteries with high energy density. This review elucidates the current issues and recent advances in PIEs. The performance of PIEs was remarkably influenced by the characteristics of the fillers including type, content, morphology, arrangement and surface groups. We focus on the molecular interaction between different components in the composite environment for designing high-performance PIEs. Finally, the obstacles and opportunities for creating high-performance PIEs are outlined. This review aims to provide some theoretical guidance and direction for the development of PIEs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
久念发布了新的文献求助10
刚刚
在水一方应助秋子david采纳,获得10
刚刚
犹豫小海豚完成签到,获得积分10
1秒前
1秒前
科研小白完成签到,获得积分10
1秒前
陶醉清发布了新的文献求助10
1秒前
1秒前
汉堡包应助拼搏靖巧采纳,获得10
2秒前
Akim应助旺旺碎冰冰采纳,获得10
3秒前
强强哥完成签到,获得积分10
3秒前
无花果应助叮当采纳,获得10
3秒前
杨狗蛋发布了新的文献求助10
4秒前
喵喵发布了新的文献求助50
4秒前
4秒前
酷波er应助李浩然采纳,获得10
5秒前
定西发布了新的文献求助20
5秒前
刘秀的猫咪完成签到 ,获得积分10
6秒前
hyc完成签到 ,获得积分10
6秒前
7秒前
Jasper应助注水萝卜采纳,获得20
7秒前
张杰列夫发布了新的文献求助10
7秒前
英俊的铭应助幽默的方盒采纳,获得10
7秒前
浮游应助土地采纳,获得10
7秒前
BareBear应助Ding_RJ采纳,获得10
7秒前
7秒前
愿学的都会完成签到,获得积分10
8秒前
8秒前
8秒前
9秒前
酷波er应助zjl采纳,获得10
9秒前
owoow发布了新的文献求助10
9秒前
10秒前
10秒前
强强哥发布了新的文献求助10
10秒前
oo完成签到,获得积分10
10秒前
ymj完成签到,获得积分10
10秒前
爆米花应助久念采纳,获得10
10秒前
小米发布了新的文献求助10
11秒前
Akim应助ddd采纳,获得10
11秒前
yu完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1041
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5490517
求助须知:如何正确求助?哪些是违规求助? 4589033
关于积分的说明 14423100
捐赠科研通 4521062
什么是DOI,文献DOI怎么找? 2477127
邀请新用户注册赠送积分活动 1462477
关于科研通互助平台的介绍 1435318