Prediction model of transformer top oil temperature based on data quality enhancement

计算机科学 变压器 数据挖掘 时间序列 缺少数据 预测建模 机器学习 电压 量子力学 物理
作者
Naxin Dong,Ruoyu Zhang,Li Zong,Bin Cao
出处
期刊:Review of Scientific Instruments [American Institute of Physics]
卷期号:94 (7)
标识
DOI:10.1063/5.0159072
摘要

Top oil temperature (TOT) is an important parameter to evaluate the running state of a transformer. According to the variation trend of TOT, the internal thermal state of transformers can be predicted so as to arrange operation and maintenance reasonably and prevent the occurrence of accidents. However, due to the complex working environment in the field, there are often a large number of missing values in online monitoring data, which seriously affects the prediction of TOT. At the same time, it is affected by various factors such as load, ambient temperature, wind speed, and solar radiation, which cause the information of different time scales to be mixed in its monitoring data. Therefore, it is difficult to achieve the desired accuracy with a single model. In this article, a model for predicting TOT based on data quality enhancement is proposed. First, the Markov model is used to complete the online monitoring data containing missing values to obtain a complete and continuous time series. Then, using the ensemble empirical modal decomposition method, the time series of TOT is decomposed into multiple time series components to eliminate the interaction between different time scales of information, thus reducing the prediction difficulty. Finally, the sub-prediction model of the extreme learning machine is constructed, and the prediction results of all the sub-models are reconstructed to obtain the final prediction results of TOT. In order to verify the effectiveness of the model, the TOT of an operating transformer for the next two days is predicted in the article, and its mean absolute percentage error (MAPE) is 5.27% and its root mean square error (RMSE) is 2.46. Compared with the BP neural network model and the support vector machines (SVM) model, the MAPE is reduced by 69.56% and 61.92%, respectively, and the RMSE is reduced by 67.02% and 59.87%. The results of this study will provide important support for the fault diagnosis of the top oil temperature online monitoring system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
liangmh发布了新的文献求助30
1秒前
1秒前
3秒前
感动水杯发布了新的文献求助10
3秒前
活泼的颤完成签到,获得积分10
3秒前
4秒前
4秒前
青山发布了新的文献求助10
4秒前
5秒前
6秒前
7秒前
琦_完成签到,获得积分10
7秒前
刺五加发布了新的文献求助10
7秒前
7秒前
7秒前
8秒前
舟夏发布了新的文献求助10
8秒前
伶俐的万天完成签到,获得积分10
9秒前
9秒前
9秒前
gis完成签到,获得积分10
10秒前
Joker发布了新的文献求助10
10秒前
arabes完成签到,获得积分10
11秒前
11秒前
PUMCHmy发布了新的文献求助10
11秒前
丘比特应助军哥采纳,获得10
13秒前
zzzzz完成签到,获得积分10
13秒前
希望天下0贩的0应助qq采纳,获得10
14秒前
14秒前
怕黑满天发布了新的文献求助10
14秒前
gis发布了新的文献求助50
14秒前
青山完成签到,获得积分10
15秒前
wuya发布了新的文献求助10
15秒前
幸福大白发布了新的文献求助10
16秒前
16秒前
lina完成签到,获得积分10
16秒前
aaaa发布了新的文献求助10
17秒前
17秒前
Joker完成签到,获得积分10
17秒前
磊大彪发布了新的文献求助20
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
An overview of orchard cover crop management 1000
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 1000
基于3um sOl硅光平台的集成发射芯片关键器件研究 500
A review of Order Plesiosauria, and the description of a new, opalised pliosauroid, Leptocleidus demoscyllus, from the early cretaceous of Coober Pedy, South Australia 400
National standards & grade-level outcomes for K-12 physical education 400
Research Handbook on Law and Political Economy Second Edition 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4809597
求助须知:如何正确求助?哪些是违规求助? 4123539
关于积分的说明 12758128
捐赠科研通 3859318
什么是DOI,文献DOI怎么找? 2124437
邀请新用户注册赠送积分活动 1146216
关于科研通互助平台的介绍 1039432