Design, Performance Optimization and Application of High-Entropy Alloy Materials in Mechanical Engineering: A Review

高熵合金 合金 熵(时间箭头) 材料科学 材料设计 计算机科学 人工智能 机器学习 机械工程 热力学 冶金 工程类 复合材料 物理
作者
Qiang Ye,Xiaoxia Lv
出处
期刊:Science of Advanced Materials [American Scientific Publishers]
卷期号:15 (5): 589-606
标识
DOI:10.1166/sam.2023.4471
摘要

High-entropy alloys have multi-scale and complex microstructures, and their properties are highly tunable. They have great potential for development. However, the current development of high-entropy alloys is still dominated by trial and error, lacking effective guidance and low development efficiency. Machine learning is a data-based material design technology, which has been applied to the prediction of phase composition, prediction and optimization of mechanical properties, and auxiliary simulation calculations in the field of high-entropy alloys. However, the insufficiency of existing data, unbalanced distribution and the limitation of the model itself lead to great uncertainty in the composition optimization strategy based on machine learning. Based on this, this paper takes the machine learning method as the core, combines the composition design and the material design idea based on machine learning, and discusses its design idea in the high-entropy alloy system. And summarize their application research status in high entropy alloy composition screening, phase and structure calculation, and performance prediction. Finally, the current problems in this field are proposed, and solutions and future prospects are provided.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yangqisen完成签到,获得积分10
刚刚
笨笨凡之发布了新的文献求助10
1秒前
莴苣发布了新的文献求助10
1秒前
123关注了科研通微信公众号
2秒前
3秒前
3秒前
斯文败类应助云中雨采纳,获得10
5秒前
7秒前
8秒前
11秒前
zhaiyi完成签到,获得积分10
12秒前
彭于彦祖应助雪狐417采纳,获得50
14秒前
14秒前
15秒前
iNk应助zhaiyi采纳,获得10
16秒前
头上有犄角bb完成签到,获得积分10
16秒前
17秒前
Ava应助避橙采纳,获得10
19秒前
巧克力小蛋糕完成签到,获得积分10
21秒前
21秒前
尘南浔发布了新的文献求助10
23秒前
27秒前
笨笨凡之完成签到,获得积分10
30秒前
茂飞发布了新的文献求助10
31秒前
33秒前
江沅发布了新的文献求助10
33秒前
王壮壮发布了新的文献求助10
33秒前
默默白开水完成签到 ,获得积分10
35秒前
雪白的雪完成签到,获得积分10
37秒前
37秒前
小马发布了新的文献求助10
38秒前
诸葛小哥哥完成签到 ,获得积分10
38秒前
SYLH应助cazer_Wang采纳,获得10
39秒前
ding应助midokaori采纳,获得10
39秒前
limon1024发布了新的文献求助10
42秒前
43秒前
44秒前
阿桥完成签到,获得积分10
45秒前
吾日三省吾身完成签到 ,获得积分10
46秒前
49秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965258
求助须知:如何正确求助?哪些是违规求助? 3510593
关于积分的说明 11154128
捐赠科研通 3244907
什么是DOI,文献DOI怎么找? 1792684
邀请新用户注册赠送积分活动 873943
科研通“疑难数据库(出版商)”最低求助积分说明 804126