ADFL: Defending backdoor attacks in federated learning via adversarial distillation

后门 计算机科学 计算机安全 对抗制 任务(项目管理) 架空(工程) 人工智能 机器学习 工程类 系统工程 操作系统
作者
Chengcheng Zhu,Jiale Zhang,Xiaobing Sun,Bing Chen,Weizhi Meng
出处
期刊:Computers & Security [Elsevier BV]
卷期号:132: 103366-103366 被引量:22
标识
DOI:10.1016/j.cose.2023.103366
摘要

Federated learning enables multi-participant joint modeling with distributed and localized training, thus effectively overcoming the problems of data island and privacy protection. However, existing federated learning frameworks have proven to be vulnerable to backdoor attacks, where attackers embed backdoor triggers into local models during the training phase. These triggers will be activated by crafted inputs during the prediction phase, leading to misclassification targeted by attackers. To address these issues, existing defense methods focus on both backdoor detection and backdoor erasing. However, passive backdoor detection methods cannot eliminate the effect of embedded backdoor patterns, while backdoor erasing may degenerate the model performance and cause extra computation overhead. This paper proposes ADFL, a novel adversarial distillation-based backdoor defense scheme for federated learning. ADFL generates fake samples containing backdoor features by deploying a generative adversarial network (GAN) on the server side and relabeling the fake samples to obtain the distillation dataset. Then, taking the labeled samples as inputs, knowledge distillation which employs the clean model as a teacher and the global model as a student is implemented to revise the global model and eliminate the influence of backdoored Neurons in it, thereby effectively defending against backdoor attacks while maintaining the model performance. Experimental results show that ADFL can lower the attack success rates by 95% while maintaining the main task accuracy above 90%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小于发布了新的文献求助10
1秒前
小青年儿完成签到 ,获得积分10
2秒前
KeYang完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
3秒前
3秒前
天真大神发布了新的文献求助10
8秒前
小田完成签到 ,获得积分10
9秒前
牛牛在搬砖完成签到,获得积分10
10秒前
11秒前
咸鱼不翻身完成签到,获得积分10
13秒前
量子星尘发布了新的文献求助50
13秒前
Soledad完成签到 ,获得积分10
13秒前
ouyang关注了科研通微信公众号
16秒前
19秒前
xiongyuan完成签到,获得积分10
19秒前
英俊的菲鹰完成签到,获得积分20
20秒前
霸气曼雁发布了新的文献求助10
22秒前
SciGPT应助科研通管家采纳,获得10
24秒前
李健应助科研通管家采纳,获得10
24秒前
852应助科研通管家采纳,获得10
24秒前
华仔应助科研通管家采纳,获得10
24秒前
bkagyin应助科研通管家采纳,获得10
25秒前
我是老大应助科研通管家采纳,获得10
25秒前
科研通AI5应助科研通管家采纳,获得10
25秒前
科研通AI5应助科研通管家采纳,获得30
25秒前
ephore应助科研通管家采纳,获得40
25秒前
orixero应助科研通管家采纳,获得10
25秒前
若ruofeng应助科研通管家采纳,获得20
25秒前
若ruofeng应助科研通管家采纳,获得20
25秒前
若ruofeng应助科研通管家采纳,获得20
25秒前
Gengar完成签到,获得积分10
25秒前
若ruofeng应助科研通管家采纳,获得20
25秒前
若ruofeng应助科研通管家采纳,获得20
25秒前
隐形曼青应助科研通管家采纳,获得10
26秒前
赘婿应助科研通管家采纳,获得10
26秒前
若ruofeng应助科研通管家采纳,获得20
26秒前
若ruofeng应助科研通管家采纳,获得20
26秒前
26秒前
科研通AI6应助科研通管家采纳,获得10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
Why Neuroscience Matters in the Classroom 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5046389
求助须知:如何正确求助?哪些是违规求助? 4275677
关于积分的说明 13327591
捐赠科研通 4089599
什么是DOI,文献DOI怎么找? 2237816
邀请新用户注册赠送积分活动 1244999
关于科研通互助平台的介绍 1173142