清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Using Artificial Intelligence to Diagnose Osteoporotic Vertebral Fractures on Plain Radiographs

医学 射线照相术 放射科 医学诊断 试验预测值 诊断准确性 内科学
作者
Li Shen,Chao Gao,Shundong Hu,Dan Kang,Zhaogang Zhang,Dongdong Xia,Yiren Xu,Shoukui Xiang,Qiong Zhu,GeWen Xu,Feng Tang,Hua Yue,Wei Yu,Zhenlin Zhang
出处
期刊:Journal of Bone and Mineral Research [Wiley]
卷期号:38 (9): 1278-1287 被引量:33
标识
DOI:10.1002/jbmr.4879
摘要

Osteoporotic vertebral fracture (OVF) is a risk factor for morbidity and mortality in elderly population, and accurate diagnosis is important for improving treatment outcomes. OVF diagnosis suffers from high misdiagnosis and underdiagnosis rates, as well as high workload. Deep learning methods applied to plain radiographs, a simple, fast, and inexpensive examination, might solve this problem. We developed and validated a deep-learning-based vertebral fracture diagnostic system using area loss ratio, which assisted a multitasking network to perform skeletal position detection and segmentation and identify and grade vertebral fractures. As the training set and internal validation set, we used 11,397 plain radiographs from six community centers in Shanghai. For the external validation set, 1276 participants were recruited from the outpatient clinic of the Shanghai Sixth People's Hospital (1276 plain radiographs). Radiologists performed all X-ray images and used the Genant semiquantitative tool for fracture diagnosis and grading as the ground truth data. Accuracy, sensitivity, specificity, positive predictive value, and negative predictive value were used to evaluate diagnostic performance. The AI_OVF_SH system demonstrated high accuracy and computational speed in skeletal position detection and segmentation. In the internal validation set, the accuracy, sensitivity, and specificity with the AI_OVF_SH model were 97.41%, 84.08%, and 97.25%, respectively, for all fractures. The sensitivity and specificity for moderate fractures were 88.55% and 99.74%, respectively, and for severe fractures, they were 92.30% and 99.92%. In the external validation set, the accuracy, sensitivity, and specificity for all fractures were 96.85%, 83.35%, and 94.70%, respectively. For moderate fractures, the sensitivity and specificity were 85.61% and 99.85%, respectively, and 93.46% and 99.92% for severe fractures. Therefore, the AI_OVF_SH system is an efficient tool to assist radiologists and clinicians to improve the diagnosing of vertebral fractures. © 2023 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
vbnn完成签到 ,获得积分10
3秒前
研究新人完成签到,获得积分10
10秒前
cgs完成签到 ,获得积分10
17秒前
Singularity应助科研通管家采纳,获得10
18秒前
Singularity应助科研通管家采纳,获得10
18秒前
36秒前
39秒前
无情的琳发布了新的文献求助10
39秒前
zxx完成签到 ,获得积分10
42秒前
量子星尘发布了新的文献求助10
1分钟前
自觉匪完成签到 ,获得积分10
1分钟前
简单的山晴完成签到,获得积分10
1分钟前
谭凯文完成签到 ,获得积分10
1分钟前
李志全完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
chen发布了新的文献求助10
1分钟前
Daisy发布了新的文献求助30
1分钟前
pegasus0802完成签到,获得积分10
1分钟前
1分钟前
风趣的冬卉完成签到 ,获得积分10
1分钟前
贺贺发布了新的文献求助10
2分钟前
小趴蔡完成签到 ,获得积分10
2分钟前
贺贺完成签到,获得积分0
2分钟前
胡国伦完成签到 ,获得积分10
2分钟前
2分钟前
chen完成签到,获得积分10
2分钟前
如意2023完成签到 ,获得积分10
2分钟前
2分钟前
vitamin完成签到 ,获得积分10
2分钟前
wanci应助无情的琳采纳,获得10
2分钟前
2分钟前
2分钟前
jojo完成签到,获得积分10
2分钟前
无情的琳发布了新的文献求助10
2分钟前
甜甜的紫菜完成签到 ,获得积分10
3分钟前
lilylwy完成签到 ,获得积分0
3分钟前
3分钟前
甜甜纸飞机完成签到 ,获得积分10
3分钟前
Pengy发布了新的文献求助10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5724374
求助须知:如何正确求助?哪些是违规求助? 5287586
关于积分的说明 15299851
捐赠科研通 4872291
什么是DOI,文献DOI怎么找? 2616852
邀请新用户注册赠送积分活动 1566694
关于科研通互助平台的介绍 1523657