Using Artificial Intelligence to Diagnose Osteoporotic Vertebral Fractures on Plain Radiographs

医学 射线照相术 放射科 医学诊断 试验预测值 诊断准确性 内科学
作者
Li Shen,Chao Gao,Shundong Hu,Dan Kang,Zhaogang Zhang,Dongdong Xia,Yiren Xu,Shoukui Xiang,Qiong Zhu,GeWen Xu,Feng Tang,Hua Yue,Wei Yu,Zhenlin Zhang
出处
期刊:Journal of Bone and Mineral Research [Oxford University Press]
卷期号:38 (9): 1278-1287 被引量:24
标识
DOI:10.1002/jbmr.4879
摘要

Osteoporotic vertebral fracture (OVF) is a risk factor for morbidity and mortality in elderly population, and accurate diagnosis is important for improving treatment outcomes. OVF diagnosis suffers from high misdiagnosis and underdiagnosis rates, as well as high workload. Deep learning methods applied to plain radiographs, a simple, fast, and inexpensive examination, might solve this problem. We developed and validated a deep-learning-based vertebral fracture diagnostic system using area loss ratio, which assisted a multitasking network to perform skeletal position detection and segmentation and identify and grade vertebral fractures. As the training set and internal validation set, we used 11,397 plain radiographs from six community centers in Shanghai. For the external validation set, 1276 participants were recruited from the outpatient clinic of the Shanghai Sixth People's Hospital (1276 plain radiographs). Radiologists performed all X-ray images and used the Genant semiquantitative tool for fracture diagnosis and grading as the ground truth data. Accuracy, sensitivity, specificity, positive predictive value, and negative predictive value were used to evaluate diagnostic performance. The AI_OVF_SH system demonstrated high accuracy and computational speed in skeletal position detection and segmentation. In the internal validation set, the accuracy, sensitivity, and specificity with the AI_OVF_SH model were 97.41%, 84.08%, and 97.25%, respectively, for all fractures. The sensitivity and specificity for moderate fractures were 88.55% and 99.74%, respectively, and for severe fractures, they were 92.30% and 99.92%. In the external validation set, the accuracy, sensitivity, and specificity for all fractures were 96.85%, 83.35%, and 94.70%, respectively. For moderate fractures, the sensitivity and specificity were 85.61% and 99.85%, respectively, and 93.46% and 99.92% for severe fractures. Therefore, the AI_OVF_SH system is an efficient tool to assist radiologists and clinicians to improve the diagnosing of vertebral fractures. © 2023 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
圈圈完成签到 ,获得积分10
1秒前
思源应助677采纳,获得10
2秒前
Weiming发布了新的文献求助30
2秒前
Sledge完成签到,获得积分10
5秒前
丹妮完成签到 ,获得积分10
7秒前
10秒前
11秒前
熬夜猝死的我完成签到 ,获得积分10
11秒前
动听千风完成签到 ,获得积分10
11秒前
xingxing完成签到 ,获得积分10
12秒前
小苹果完成签到,获得积分10
13秒前
677发布了新的文献求助10
16秒前
俏皮白云完成签到 ,获得积分10
17秒前
xue112完成签到 ,获得积分10
19秒前
沉沉完成签到 ,获得积分0
24秒前
ZZZZZ完成签到,获得积分10
25秒前
孤独的大灰狼完成签到 ,获得积分10
30秒前
677完成签到,获得积分20
32秒前
mrwang完成签到 ,获得积分10
39秒前
40秒前
dong完成签到 ,获得积分10
42秒前
YAN完成签到 ,获得积分10
45秒前
辛勤的泽洋完成签到 ,获得积分10
47秒前
nav完成签到 ,获得积分10
55秒前
L1完成签到 ,获得积分10
55秒前
陈少华完成签到 ,获得积分10
1分钟前
1分钟前
橙汁摇一摇完成签到 ,获得积分10
1分钟前
shuangfeng1853完成签到 ,获得积分10
1分钟前
研友_西门孤晴完成签到,获得积分10
1分钟前
抚琴祛魅完成签到 ,获得积分10
1分钟前
风不尽,树不静完成签到 ,获得积分10
1分钟前
ES完成签到 ,获得积分0
1分钟前
淡淡宛完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
oyly完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
小文殊发布了新的文献求助10
1分钟前
高分求助中
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
The Power of High-Throughput Experimentation: General Topics and Enabling Technologies for Synthesis and Catalysis (Volume 1) 200
NK Cell Receptors: Advances in Cell Biology and Immunology by Colton Williams (Editor) 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3827379
求助须知:如何正确求助?哪些是违规求助? 3369672
关于积分的说明 10456756
捐赠科研通 3089294
什么是DOI,文献DOI怎么找? 1699847
邀请新用户注册赠送积分活动 817534
科研通“疑难数据库(出版商)”最低求助积分说明 770251