Spatial and Spectral Structure Preserved Self-Representation for Unsupervised Hyperspectral Band Selection

高光谱成像 模式识别(心理学) 人工智能 判别式 计算机科学 冗余(工程) 主成分分析 光谱带 特征选择 图形 降维 数据立方体 特征向量 空间分析 代表(政治) 数学 数据挖掘 遥感 理论计算机科学 地理 统计 操作系统 政治 政治学 法学
作者
Chang Tang,Jun Wang,Xiao Zheng,Xinwang Liu,Weiying Xie,Xianju Li,Xinzhong Zhu
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-13 被引量:41
标识
DOI:10.1109/tgrs.2023.3331236
摘要

As an effective manner to reduce data redundancy and processing inconvenience, hyperspectral band selection aims to select a subset of informative and discriminative bands from the original data cube. Although a large number of approaches have been proposed and obtained great success, they still face at least two issues. Firstly, most of the previous methods only consider the redundancy between neighbor bands, while the global information has been ignored. Secondly, each band is often treated as a whole and reshaped to a feature vector without considering the spatial structure of different regions. In this paper, in order to address these issues, we propose a spatial and spectral structure preserved self-representation model for unsupervised hyperspectral band selection without using any label information, referred to as S 4 P briefly. Different from previous methods that stretch each band into a feature vector, the first principal component of the original hyperspectral cube is segmented into different superpixels, which can reflect the spatial structure of homogeneous regions. Then each band can be represented by a superpixel level feature vector and the self-representation model is utilized to learn the spectral correlation of different bands. In addition, an adaptive and weighted multiple graph fusion term is designed to generate a unified similarity graph between different superpixels, which is used to capture the spatial structure in the self-representation space. Finally, an l 2,1 -norm is imposed on the self-representation coefficient matrix to measure the band importance. We design an alternative update scheme to optimize the resultant problem, the self-representation coefficient matrix and the superpixel-wise similarity graph can boost each other during the updating process to obtain optimal results. Extensive experiments with detailed analysis of three public datasets are conducted to validate the superiority of the proposed S 4 P when compared with other state-of-the-art competitors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
所所应助单于青荷采纳,获得10
1秒前
晨晨lili完成签到,获得积分10
1秒前
小张发布了新的文献求助10
2秒前
有点儿小库完成签到,获得积分10
2秒前
2秒前
今后应助叽里咕噜采纳,获得10
2秒前
无聊的翠芙完成签到,获得积分10
2秒前
3秒前
4秒前
4秒前
4秒前
4秒前
4秒前
科研通AI5应助大风起兮采纳,获得10
4秒前
清脆安南完成签到 ,获得积分10
4秒前
5秒前
啦啦啦发布了新的文献求助10
5秒前
夜雨发布了新的文献求助10
5秒前
happyboy2008完成签到,获得积分10
6秒前
Xin完成签到,获得积分10
6秒前
今后应助南华采纳,获得10
6秒前
许熙完成签到,获得积分10
7秒前
Chengjun完成签到,获得积分10
7秒前
务实的胡萝卜完成签到 ,获得积分10
7秒前
独特秋双完成签到,获得积分10
7秒前
小二郎应助123123123采纳,获得10
8秒前
mmmmm发布了新的文献求助10
8秒前
yiyilinlin完成签到,获得积分10
8秒前
8秒前
sinsinsin发布了新的文献求助10
8秒前
蓦然回首完成签到,获得积分10
8秒前
罗丹丹完成签到,获得积分10
9秒前
少言完成签到,获得积分10
9秒前
9秒前
9秒前
xmyang完成签到,获得积分10
9秒前
yinxx完成签到,获得积分10
10秒前
happy杨完成签到,获得积分10
10秒前
Chengjun发布了新的文献求助10
11秒前
MissXia完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2000
Biodegradable Embolic Microspheres Market Insights 888
Quantum reference frames : from quantum information to spacetime 888
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
(The) Founding Fathers of America 500
2025-2031全球及中国蛋黄lgY抗体行业研究及十五五规划分析报告(2025-2031 Global and China Chicken lgY Antibody Industry Research and 15th Five Year Plan Analysis Report) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4459424
求助须知:如何正确求助?哪些是违规求助? 3923653
关于积分的说明 12174853
捐赠科研通 3575431
什么是DOI,文献DOI怎么找? 1964220
邀请新用户注册赠送积分活动 1003117
科研通“疑难数据库(出版商)”最低求助积分说明 897838