Using MRI Radiomics to Predict the Efficacy of Immunotherapy for Brain Metastasis in Patients with Small Cell Lung Cancer

无线电技术 脑转移 免疫疗法 肺癌 医学 肿瘤科 转移 内科学 放射科 癌症
作者
Xiujin Shi,Ping Wang,Yun Li,Jin Xu,Jason Yu,Fei Teng
出处
期刊:International Journal of Radiation Oncology Biology Physics [Elsevier]
卷期号:117 (2): e65-e66
标识
DOI:10.1016/j.ijrobp.2023.06.791
摘要

Immune-checkpoint inhibitors (ICIs) combined with chemotherapy has been widely used in the first-line treatment of small cell lung cancer (SCLC) patients. However, the efficacy of ICIs for patients with brain metastases (BMs) of SCLC is limited. There are no effective factors to predict the efficacy. We developed and validate a model to predict intracranial efficacy for ICIs in patients with BMs from SCLC by using MRI radiomics.In this study, we collected 101 SCLC patients with BMs treated with ICIs. They clinical characteristics and pre-treatment Magnetic Resonance Imaging (MRI) were collected. Seventy cases collected from our hospital as training cohort and 31 cases collected from another hospital as an independent validation cohort. Brain metastatic lesions were contoured on ITK-SNAP software and 3748 radiomic features capturing both intra- and peritumoral texture patterns were extracted. The primary endpoint of this study was intracranial overall response rate (ORR). Intraclass correlation coefficient (ICC) and random forest (RF) model were used to select radiomic features. The top 10 selected radiomic features were adopted to build prognostic models by using logistic regression. Area Under the Curve (AUC) of the Receiver Operating Characteristic (ROC) was chosen as the metric to assess model performances. We also performed a nomogram based on a multivariate logistic regression model includes radiomic and clinical features to predict ICIs intracranial efficacy.The clinical characteristics including number of treatment lines and concurrent brain radiotherapy, ten intratumoral signatures and one peritumoral signatures were found significantly associated with ICIs intracranial efficacy. Predictors contained in the individualized prediction nomogram included the radiomics signature, and clinical features. The model showed favorable discrimination with a C-index of 0.861[95% CI: 0.779-0.943] and AUC of 0.861[95% CI: 0.778- 0.944] in training cohort and with a C-index of 0.812[95% CI: 0.647-0.978] and AUC of 0.812[95% CI:0.646-0.979] in the test cohort.Radiomic features from pre-treatment MRI images were predictive for intracranial efficacy in SCLC patients with BMs. Pre-treatment radiomics may allow early prediction of benefit and expedite more aggressive treatment for high-risk patients and it has to be further explored as predictor of outcome in a larger series of patients.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NiceLittleQ完成签到,获得积分10
刚刚
繁花发布了新的文献求助10
1秒前
正己化人应助小胖子采纳,获得10
1秒前
钱都来发布了新的文献求助10
2秒前
啾啾完成签到 ,获得积分10
5秒前
chenbin1105完成签到,获得积分10
6秒前
小二郎应助繁花采纳,获得10
7秒前
7秒前
搞怪的访琴完成签到,获得积分10
8秒前
研友_8Wz5MZ完成签到,获得积分10
8秒前
9秒前
嘿嘿发布了新的文献求助10
10秒前
10秒前
shhoing应助SLL采纳,获得10
12秒前
12秒前
12秒前
悦耳的扬发布了新的文献求助10
14秒前
hhh完成签到,获得积分10
14秒前
15秒前
16秒前
林林总总发布了新的文献求助10
18秒前
seven完成签到,获得积分10
19秒前
Owen应助悦耳的扬采纳,获得10
21秒前
思源应助qiqi77采纳,获得10
23秒前
顾矜应助耍酷的天德采纳,获得10
23秒前
阿尔法突触核蛋白完成签到,获得积分10
24秒前
激情的健柏完成签到 ,获得积分10
24秒前
潘啊潘完成签到 ,获得积分10
25秒前
xcltzh2517完成签到,获得积分10
25秒前
27秒前
共享精神应助wave采纳,获得10
29秒前
jiuwu完成签到,获得积分10
29秒前
29秒前
31秒前
玄风应助小胖子采纳,获得10
31秒前
萧东辰完成签到,获得积分10
32秒前
无语的巨人完成签到 ,获得积分10
34秒前
专一的白萱完成签到 ,获得积分10
35秒前
自信书竹完成签到 ,获得积分10
35秒前
温超完成签到,获得积分10
36秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Minimizing the Effects of Phase Quantization Errors in an Electronically Scanned Array 1000
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
The Scope of Slavic Aspect 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5535354
求助须知:如何正确求助?哪些是违规求助? 4623250
关于积分的说明 14586394
捐赠科研通 4563672
什么是DOI,文献DOI怎么找? 2501129
邀请新用户注册赠送积分活动 1480339
关于科研通互助平台的介绍 1451683