Physics-Integrated Machine Learning for Efficient Design and Optimization of a Nanoscale Carbon Nanotube Field-Effect Transistor

碳纳米管场效应晶体管 计算机科学 杠杆(统计) 场效应晶体管 过度拟合 晶体管 人工智能 机器学习 材料科学 人工神经网络 工程类 电气工程 电压
作者
Guangxi Fan,Kain Lu Low
出处
期刊:ECS Journal of Solid State Science and Technology [Institute of Physics]
卷期号:12 (9): 091005-091005 被引量:3
标识
DOI:10.1149/2162-8777/acfb38
摘要

We propose an efficient framework for optimizing the design of Carbon Nanotube Field-Effect Transistor (CNTFET) through the integration of device physics, machine learning (ML), and multi-objective optimization (MOO). Firstly, we leverage the calibrated TCAD model based on experimental data to dissect the physical mechanisms of CNTFET, gaining insights into its operational principles and unique physical properties. This model also serves as a foundation, enabling multi-scale performance evaluations essential for dataset construction. In the ML phase, a chain structure of Support Vector Regression (SVR Chain) guided by a comprehensive statistical analysis of the design metrics is utilized to predict the design metrics. The surrogate model based on the SVR Chain achieves an average mean absolute percentage error (MAPE) of 1.59% across all design metrics without overfitting, even with limited data. The established ML model exhibits its competence in rapidly producing a global response surface for multi-scale CNTFET. Remarkably, an anomalous equivalent oxide thickness ( EOT ) and ON-state current ( I on ) relationship is observed in CNTFET behavior due to extreme gate length scaling in long channel devices. This intriguing observation is further elucidated through a physics-based explanation. We further compare shallow and deep learning-based TCAD digital twins for model selection guidance. Using the Non-Dominated Sorted Genetic Algorithm-II (NSGA-II) in MOO, we harmonize metrics at both device and circuit levels, significantly reducing the design space. The closed-loop framework expedites the early-stage development of advanced transistors, overcoming the challenges posed by limited data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
来来完成签到 ,获得积分10
4秒前
千年雪松完成签到,获得积分10
4秒前
lizhiqian2024发布了新的文献求助10
5秒前
高山我梦完成签到,获得积分10
7秒前
酷波er应助可口可乐采纳,获得10
8秒前
等待的花卷完成签到,获得积分20
9秒前
畅快的念烟完成签到,获得积分10
9秒前
11秒前
健壮的凝冬完成签到 ,获得积分10
12秒前
CY完成签到,获得积分10
12秒前
celine发布了新的文献求助10
16秒前
心心发布了新的文献求助20
17秒前
开心完成签到 ,获得积分10
17秒前
卡卡完成签到 ,获得积分10
17秒前
sqw完成签到,获得积分10
19秒前
21秒前
26秒前
CipherSage应助Starry采纳,获得10
27秒前
zyc完成签到,获得积分10
28秒前
Nostalgia完成签到,获得积分10
29秒前
帅气的雁枫完成签到,获得积分10
29秒前
嘻嘻哈哈完成签到 ,获得积分10
31秒前
31秒前
任性的咖啡完成签到,获得积分20
31秒前
lizhiqian2024发布了新的文献求助10
33秒前
留胡子的夜白完成签到,获得积分10
34秒前
35秒前
一诺相许完成签到 ,获得积分10
35秒前
流川枫完成签到,获得积分10
35秒前
雪妮完成签到 ,获得积分10
36秒前
可口可乐发布了新的文献求助10
36秒前
Starry发布了新的文献求助10
39秒前
老衲完成签到,获得积分10
39秒前
西出钰门发布了新的文献求助30
40秒前
weijie完成签到,获得积分10
40秒前
贪玩路灯完成签到 ,获得积分10
40秒前
KK关注了科研通微信公众号
40秒前
xiangzq完成签到,获得积分10
43秒前
zzy发布了新的文献求助10
44秒前
celine完成签到,获得积分10
45秒前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
Political Ideologies Their Origins and Impact 13 edition 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801065
求助须知:如何正确求助?哪些是违规求助? 3346581
关于积分的说明 10329750
捐赠科研通 3063074
什么是DOI,文献DOI怎么找? 1681341
邀请新用户注册赠送积分活动 807491
科研通“疑难数据库(出版商)”最低求助积分说明 763726