Generation of a Melanoma and Nevus Data Set From Unstandardized Clinical Photographs on the Internet

数据集 试验装置 卷积神经网络 人工智能 集合(抽象数据类型) 医学 判别式 计算机科学 互联网 模式识别(心理学) 黑色素瘤 机器学习 万维网 癌症研究 程序设计语言
作者
Soo Ick Cho,Cristián Navarrete‐Dechent,Roxana Daneshjou,Hye Soo Cho,Sung Eun Chang,Seong Hwan Kim,Jung‐Im Na,Seung Seog Han
出处
期刊:JAMA Dermatology [American Medical Association]
卷期号:159 (11): 1223-1223 被引量:7
标识
DOI:10.1001/jamadermatol.2023.3521
摘要

Importance Artificial intelligence (AI) training for diagnosing dermatologic images requires large amounts of clean data. Dermatologic images have different compositions, and many are inaccessible due to privacy concerns, which hinder the development of AI. Objective To build a training data set for discriminative and generative AI from unstandardized internet images of melanoma and nevus. Design, Setting, and Participants In this diagnostic study, a total of 5619 (CAN5600 data set) and 2006 (CAN2000 data set; a manually revised subset of CAN5600) cropped lesion images of either melanoma or nevus were semiautomatically annotated from approximately 500 000 photographs on the internet using convolutional neural networks (CNNs), region-based CNNs, and large mask inpainting. For unsupervised pretraining, 132 673 possible lesions (LESION130k data set) were also created with diversity by collecting images from 18 482 websites in approximately 80 countries. A total of 5000 synthetic images (GAN5000 data set) were generated using the generative adversarial network (StyleGAN2-ADA; training, CAN2000 data set; pretraining, LESION130k data set). Main Outcomes and Measures The area under the receiver operating characteristic curve (AUROC) for determining malignant neoplasms was analyzed. In each test, 1 of the 7 preexisting public data sets (total of 2312 images; including Edinburgh, an SNU subset, Asan test, Waterloo, 7-point criteria evaluation, PAD-UFES-20, and MED-NODE) was used as the test data set. Subsequently, a comparative study was conducted between the performance of the EfficientNet Lite0 CNN on the proposed data set and that trained on the remaining 6 preexisting data sets. Results The EfficientNet Lite0 CNN trained on the annotated or synthetic images achieved higher or equivalent mean (SD) AUROCs to the EfficientNet Lite0 trained using the pathologically confirmed public data sets, including CAN5600 (0.874 [0.042]; P = .02), CAN2000 (0.848 [0.027]; P = .08), and GAN5000 (0.838 [0.040]; P = .31 [Wilcoxon signed rank test]) and the preexisting data sets combined (0.809 [0.063]) by the benefits of increased size of the training data set. Conclusions and Relevance The synthetic data set in this diagnostic study was created using various AI technologies from internet images. A neural network trained on the created data set (CAN5600) performed better than the same network trained on preexisting data sets combined. Both the annotated (CAN5600 and LESION130k) and synthetic (GAN5000) data sets could be shared for AI training and consensus between physicians.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
Twonej应助一一采纳,获得30
2秒前
老实秋寒应助Woo_SH采纳,获得10
2秒前
4秒前
领导范儿应助3080采纳,获得10
5秒前
整箱发布了新的文献求助10
6秒前
王志杰发布了新的文献求助10
6秒前
思源应助mm采纳,获得10
6秒前
7秒前
somus1997完成签到,获得积分10
7秒前
8秒前
Jasper应助么么叽采纳,获得10
8秒前
8秒前
9秒前
量子星尘发布了新的文献求助10
10秒前
Dong发布了新的文献求助10
10秒前
宴究生完成签到,获得积分10
10秒前
Ava应助晓晓采纳,获得30
11秒前
康康发布了新的文献求助10
11秒前
11秒前
我是老大应助整箱采纳,获得10
11秒前
慕青应助开朗四娘采纳,获得10
12秒前
cuber完成签到 ,获得积分10
12秒前
麦子发布了新的文献求助10
12秒前
妤懿完成签到 ,获得积分10
14秒前
完美世界应助11采纳,获得10
14秒前
危机的尔芙完成签到,获得积分10
14秒前
14秒前
hchnb1234发布了新的文献求助20
14秒前
霸气谷蕊完成签到,获得积分10
15秒前
乐乐应助remake441采纳,获得10
15秒前
顾矜应助zzyytt采纳,获得10
16秒前
16秒前
fang发布了新的文献求助10
16秒前
16秒前
小金子发布了新的文献求助10
16秒前
17秒前
Twonej应助岁月在前进采纳,获得30
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5712864
求助须知:如何正确求助?哪些是违规求助? 5212603
关于积分的说明 15268873
捐赠科研通 4864679
什么是DOI,文献DOI怎么找? 2611584
邀请新用户注册赠送积分活动 1561888
关于科研通互助平台的介绍 1519133