已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Generation of a Melanoma and Nevus Data Set From Unstandardized Clinical Photographs on the Internet

数据集 试验装置 卷积神经网络 人工智能 集合(抽象数据类型) 医学 判别式 计算机科学 互联网 模式识别(心理学) 黑色素瘤 机器学习 万维网 癌症研究 程序设计语言
作者
Soo Ick Cho,Cristián Navarrete‐Dechent,Roxana Daneshjou,Hye Soo Cho,Sung Eun Chang,Seong Hwan Kim,Jung‐Im Na,Seung Seog Han
出处
期刊:JAMA Dermatology [American Medical Association]
卷期号:159 (11): 1223-1223 被引量:7
标识
DOI:10.1001/jamadermatol.2023.3521
摘要

Importance Artificial intelligence (AI) training for diagnosing dermatologic images requires large amounts of clean data. Dermatologic images have different compositions, and many are inaccessible due to privacy concerns, which hinder the development of AI. Objective To build a training data set for discriminative and generative AI from unstandardized internet images of melanoma and nevus. Design, Setting, and Participants In this diagnostic study, a total of 5619 (CAN5600 data set) and 2006 (CAN2000 data set; a manually revised subset of CAN5600) cropped lesion images of either melanoma or nevus were semiautomatically annotated from approximately 500 000 photographs on the internet using convolutional neural networks (CNNs), region-based CNNs, and large mask inpainting. For unsupervised pretraining, 132 673 possible lesions (LESION130k data set) were also created with diversity by collecting images from 18 482 websites in approximately 80 countries. A total of 5000 synthetic images (GAN5000 data set) were generated using the generative adversarial network (StyleGAN2-ADA; training, CAN2000 data set; pretraining, LESION130k data set). Main Outcomes and Measures The area under the receiver operating characteristic curve (AUROC) for determining malignant neoplasms was analyzed. In each test, 1 of the 7 preexisting public data sets (total of 2312 images; including Edinburgh, an SNU subset, Asan test, Waterloo, 7-point criteria evaluation, PAD-UFES-20, and MED-NODE) was used as the test data set. Subsequently, a comparative study was conducted between the performance of the EfficientNet Lite0 CNN on the proposed data set and that trained on the remaining 6 preexisting data sets. Results The EfficientNet Lite0 CNN trained on the annotated or synthetic images achieved higher or equivalent mean (SD) AUROCs to the EfficientNet Lite0 trained using the pathologically confirmed public data sets, including CAN5600 (0.874 [0.042]; P = .02), CAN2000 (0.848 [0.027]; P = .08), and GAN5000 (0.838 [0.040]; P = .31 [Wilcoxon signed rank test]) and the preexisting data sets combined (0.809 [0.063]) by the benefits of increased size of the training data set. Conclusions and Relevance The synthetic data set in this diagnostic study was created using various AI technologies from internet images. A neural network trained on the created data set (CAN5600) performed better than the same network trained on preexisting data sets combined. Both the annotated (CAN5600 and LESION130k) and synthetic (GAN5000) data sets could be shared for AI training and consensus between physicians.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
闪闪的谷梦完成签到 ,获得积分10
2秒前
糖果完成签到 ,获得积分10
5秒前
Lee完成签到,获得积分10
5秒前
zommen发布了新的文献求助10
6秒前
传奇3应助Rjy采纳,获得10
6秒前
oxs完成签到 ,获得积分10
7秒前
7秒前
111111完成签到,获得积分10
8秒前
kai chen完成签到 ,获得积分0
9秒前
Zain_init完成签到 ,获得积分10
10秒前
12秒前
li完成签到 ,获得积分10
13秒前
吴谷杂粮完成签到 ,获得积分10
14秒前
林梓完成签到 ,获得积分10
15秒前
宇轩完成签到,获得积分10
17秒前
CodeCraft应助zoobijmy采纳,获得10
19秒前
研友_n0kjPL完成签到,获得积分0
20秒前
leiyang49完成签到,获得积分10
21秒前
wcy完成签到 ,获得积分10
22秒前
墨辰完成签到 ,获得积分10
22秒前
HEIKU应助司空三毒采纳,获得10
23秒前
23秒前
潇洒绿蕊完成签到,获得积分10
23秒前
24秒前
无花果应助重要奇迹采纳,获得10
27秒前
Fern完成签到 ,获得积分10
28秒前
28秒前
28秒前
Hannibal发布了新的文献求助10
28秒前
shame完成签到 ,获得积分10
29秒前
孙俪发布了新的文献求助10
30秒前
不学习的牛蛙完成签到 ,获得积分10
30秒前
ewmmel完成签到 ,获得积分10
31秒前
论文写到头秃完成签到,获得积分10
31秒前
长情巧曼发布了新的文献求助10
32秒前
姜sir完成签到 ,获得积分10
34秒前
cccr02完成签到 ,获得积分10
36秒前
38秒前
万崽秋秋糖完成签到 ,获得积分10
38秒前
别当真完成签到 ,获得积分10
41秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Computational Atomic Physics for Kilonova Ejecta and Astrophysical Plasmas 500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3782550
求助须知:如何正确求助?哪些是违规求助? 3327943
关于积分的说明 10233942
捐赠科研通 3042916
什么是DOI,文献DOI怎么找? 1670358
邀请新用户注册赠送积分活动 799680
科研通“疑难数据库(出版商)”最低求助积分说明 758919