The Use of Artificial Neural Networks for Prediction of Water in Oil Emulsions' Viscosity from Brazilian Light Oils

人工神经网络 石油工程 粘度 计算机科学 石油工业 Python(编程语言) 人工智能 机器学习 工艺工程 环境科学 工程类 材料科学 环境工程 操作系统 复合材料
作者
Rafael da Silva Oliveira,Troner Assenheimer,Víctor Rolando Ruiz Ahón
标识
DOI:10.4043/32715-ms
摘要

Abstract Brazilian offshore activity has increased substantially in recent years, with many new oil fields being developed, and there is also a significant investment in the maintenance and optimization of existing ones. In all cases, the presence of water-in-oil emulsions during oil production is a critical issue, causing pressure drops in subsea lines and adding complexity to petroleum processing, resulting in a loss of productivity and quality of the produced oil. The factors mentioned can determine the technical and economic viability of offshore oil production, so predicting this property is crucial for both the project and operational stages, although it is not an easy task to accomplish. Several empirical correlations are present in the open literature to predict the viscosity of emulsions, but usually, they are not accurate enough to be directly applied to Brazilian oils. In this paper, a machine learning approach based on the review of the literature and good practices used in the oil and gas industry and other engineering fields is proposed to predict water in oil emulsions viscosity. Was utilized 726 data points of light oil from different Brazilian fields to train an Artificial Neural Network (ANN). The input variables for the regression problem were temperature, water cut, shear rate, and °API, while the output was the relative viscosity of the emulsion. The Python programming language was used for statistical treatment, data processing, mathematical modeling, and resolution of the presented problem. After training the ANN, the resulting model demonstrated good performance, with a coefficient of determination (R2) above 0.99 for the data used for testing. The final model obtained underwent cross-validation and the mean value for R2 was also above 0.99, proving the methodology's capability to create generic models for the presented problem.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ysjx完成签到,获得积分10
刚刚
褚笑卉发布了新的文献求助10
2秒前
3秒前
qq158014169完成签到 ,获得积分10
3秒前
4秒前
5秒前
5秒前
望其项背发布了新的文献求助10
7秒前
斯文的芫完成签到,获得积分10
8秒前
yaolei完成签到,获得积分10
9秒前
柔弱熊猫发布了新的文献求助10
10秒前
鱼儿崽崽发布了新的文献求助10
10秒前
10秒前
魏晓宇给魏晓宇的求助进行了留言
11秒前
领导范儿应助caimiemie采纳,获得10
11秒前
火星上的如松完成签到,获得积分10
13秒前
所所应助ysjx采纳,获得10
14秒前
eurus发布了新的文献求助10
15秒前
Alex应助和谐绍辉采纳,获得20
16秒前
沧海青州完成签到,获得积分10
18秒前
汉堡包应助认真的海豚采纳,获得10
18秒前
19秒前
顾矜应助hky采纳,获得10
20秒前
天天快乐应助Wuhuijing采纳,获得10
20秒前
爆米花应助cyyf采纳,获得10
20秒前
20秒前
大模型应助玛丽洁采纳,获得10
21秒前
22秒前
23秒前
竹筏过海应助emile采纳,获得30
23秒前
lll完成签到,获得积分10
25秒前
25秒前
25秒前
CodeCraft应助研友_闾丘枫采纳,获得10
26秒前
quan完成签到 ,获得积分10
28秒前
29秒前
TOW完成签到,获得积分10
31秒前
31秒前
帅气惜霜发布了新的文献求助10
31秒前
Szw666发布了新的文献求助10
31秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800187
求助须知:如何正确求助?哪些是违规求助? 3345479
关于积分的说明 10325346
捐赠科研通 3061960
什么是DOI,文献DOI怎么找? 1680695
邀请新用户注册赠送积分活动 807172
科研通“疑难数据库(出版商)”最低求助积分说明 763539