光催化
双金属片
磷化物
材料科学
催化作用
金属
半导体
载流子
贵金属
可见光谱
光化学
化学
光电子学
冶金
有机化学
作者
Lu Chen,Feng Chen,Yuzhou Xia,Ruowen Liang,Renkun Huang,Guiyang Yan,Shao‐Ming Ying
摘要
The rapid recombination of charge carriers in semiconductor-based photocatalysts results in a low photocatalytic activity. Co-catalysis is considered a promising strategy to improve the photocatalytic performance of semiconductors. In this study, a bimetallic phosphide was grown by a facile in situ growth method. Loading the cocatalyst (7 wt% NiCoP) leads to activity enhancement by a factor of approximately 27 times in the visible-light-driven hydrogen evolution relative to the pristine Zn0.5Cd0.5S. The photocatalysis shows a high hydrogen evolution rate of 19.5 mmol g-1 h-1, which is much higher than that of the single metal phosphide (Ni2P: 7.0 mmol g-1 h-1; CoxP: 8.1 mmol g-1 h-1) and 7 wt% Pt modified Zn0.5Cd0.5S (0.3 mmol g-1 h-1). Its apparent quantum efficiency reaches 41.6% at 420 nm. Moreover, the photocatalyst exhibits a remarkable photostability for five consecutive cycles of photocatalytic activity measurements with a total reaction time of 15 hours. The excellent photocatalytic activity of the photocatalyst was attributed to the in situ-formed NiCoP cocatalyst, which not only acts as a reactive site but also accelerates the separation of charge carriers.
科研通智能强力驱动
Strongly Powered by AbleSci AI