Quantitative Inversion of Oil Film Thickness Based on Airborne Hyperspectral Data Using the 1DCNN_GRU Model

高光谱成像 反演(地质) 遥感 基本事实 环境科学 计算机科学 人工智能 地质学 古生物学 构造盆地
作者
Meiqi Wang,Junfang Yang,Shanwei Liu,Yanfeng Gu,Mingming Xu,Yi Ma,Jie Zhang,Jianhua Wan
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-16 被引量:6
标识
DOI:10.1109/tgrs.2023.3325805
摘要

Oil film thickness (OFT) is an important indicator for estimating the amount of oil spill, and accurately quantifying the OFT is of great significance for loss assessment. In this paper, hyperspectral images (HSIs) of different OFTs (0.01-3.04 mm) through a ground experiment were obtained, and the spectral characteristics were analyzed. To address the issue of poor spectral separability for different OFTs, the 1DConvolutional Neural Network_Gate Recurrent Unit (1DCNN_GRU) model was developed for the quantitative inversion of OFT. It was validated through experiments on airborne Cubert-S185 HSI. The experimental results indicated that: (1) The proposed 1DCNN_GRU model effectively addressed the issue of reduced quantitative inversion accuracy resulting from poor spectral separability. The inversion results of it outperformed those of the SVR, CNN, and GRU models. Moreover, the optimal time for hyperspectral sensor to monitor OFT was at noon. (2) The proposed model using airborne hyperspectral data exhibited excellent inversion performance for OFT greater than 0.07 mm, especially with the best performance in 0.60-0.90mm. (3) The accuracy of HSI based OFT inversion assisted by brightness temperature (BT) data was superior to that of OFT inversion using single-source data. In particular, the proposed model had advantages in the feature level and decision level inversion of OFT in the ranges of 0.01-0.30mm and 1.00-3.04mm, respectively. This research provides technical support for the detection of OFT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
qczgzly完成签到,获得积分10
1秒前
哭泣朝雪发布了新的文献求助10
3秒前
寒冷煎饼完成签到,获得积分10
3秒前
烟花应助高序采纳,获得10
6秒前
6秒前
眼睛大迎波完成签到,获得积分10
7秒前
kk完成签到,获得积分10
7秒前
10秒前
陈少华完成签到 ,获得积分10
12秒前
song发布了新的文献求助30
13秒前
12356完成签到,获得积分10
13秒前
一个完成签到,获得积分10
14秒前
15秒前
星辰大海应助poki采纳,获得10
16秒前
16秒前
汉堡包应助ardejiang采纳,获得10
19秒前
高序发布了新的文献求助10
19秒前
w小主发布了新的文献求助10
20秒前
花凉发布了新的文献求助50
21秒前
21秒前
乱武完成签到,获得积分20
21秒前
小蘑菇应助文艺的芫采纳,获得10
22秒前
Owen应助杨程蛟采纳,获得10
23秒前
十一完成签到,获得积分10
24秒前
沉默的板凳完成签到,获得积分20
24秒前
默默千亦完成签到,获得积分10
25秒前
清爽幻竹完成签到,获得积分10
25秒前
26秒前
CipherSage应助YY采纳,获得10
26秒前
烟花应助Lucy1069089289采纳,获得10
26秒前
高序完成签到,获得积分10
28秒前
28秒前
29秒前
taishang发布了新的文献求助10
29秒前
31秒前
Yasmine完成签到,获得积分10
32秒前
33秒前
HN洪发布了新的文献求助10
34秒前
一枝南南完成签到,获得积分10
34秒前
俊lp发布了新的文献求助10
34秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3785666
求助须知:如何正确求助?哪些是违规求助? 3331141
关于积分的说明 10250187
捐赠科研通 3046525
什么是DOI,文献DOI怎么找? 1672127
邀请新用户注册赠送积分活动 800994
科研通“疑难数据库(出版商)”最低求助积分说明 759970