Nanomesh‐YOLO: Intelligent Colorimetry E‐Skin Based on Nanomesh and Deep Learning Object Detection Algorithm

出汗 纳米网 比色法 材料科学 纳米技术 计算机科学 算法 计算机视觉 复合材料 石墨烯
作者
Hongyu Chen,Siye Xu,Haidong Liu,Chang Liu,Houfang Liu,Jian‐Zhang Chen,Hexiang Huang,Haoyu Gong,Jingzhi Wu,Hao Tang,Jinan Luo,Baohua Wen,Jianhua Zhou,Yancong Qiao
出处
期刊:Advanced Functional Materials [Wiley]
卷期号:34 (8) 被引量:6
标识
DOI:10.1002/adfm.202309798
摘要

Abstract Perspiration is an important physiological process that maintains thermal homeostasis and water–salt balance. However, the collection and analysis of perspiration currently rely on microfluidic technology and colorimetric assays. The complexity and high cost of fabricating microfluidic channels and the insecurity of chemical reagents for color reactions should be optimized. In this work, a colorimetry electronic skin (e‐skin) for intelligent perspiration monitoring has been realized. The colorimetry e‐skin system consists of the polyurethane (PU) nanomesh and the object detection algorithm You Only Look Once version 3 (YOLOv3). Due to the 44% porosity of the PU nanomesh and capillary action, the low‐cost PU nanomesh (<1 cent) can be used as the colorimetric indicator. The volume of the PU nanomesh expands to 362.37% as a result of perspiration being absorbed and changes the optical transmittance (up to 277.78%). A finite element model based on capillary action has been proposed to explain the change in optical transmittance. Finally, a database containing 735 images has been built, and the object detection algorithm YOLOv3 is used to analyze the perspiration absorbed by the PU nanomesh. The detection results can identify the perspiration volume with a high accuracy of 97%. These results show that this work has great potential in healthcare field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
下雨天完成签到,获得积分10
刚刚
lingling关注了科研通微信公众号
1秒前
和谐尔阳完成签到 ,获得积分10
1秒前
顾矜应助温暖采纳,获得10
1秒前
汤圆应助清秀的初南采纳,获得10
2秒前
慕容绝义完成签到,获得积分10
2秒前
安恋雨完成签到 ,获得积分10
3秒前
健忘的雨安完成签到,获得积分10
3秒前
xiaohongmao完成签到,获得积分10
3秒前
纸鸢应助科研通管家采纳,获得10
4秒前
时冬冬应助科研通管家采纳,获得10
4秒前
华仔应助科研通管家采纳,获得10
4秒前
4秒前
李爱国应助科研通管家采纳,获得10
5秒前
科研通AI5应助科研通管家采纳,获得10
5秒前
5秒前
nozero应助科研通管家采纳,获得100
5秒前
完美世界应助科研通管家采纳,获得10
5秒前
顾矜应助科研通管家采纳,获得10
5秒前
5秒前
沙瑞金完成签到,获得积分10
6秒前
lq102021完成签到,获得积分10
6秒前
聪明小于完成签到 ,获得积分10
7秒前
踏实的盼秋完成签到,获得积分10
7秒前
7秒前
7秒前
Jenny完成签到,获得积分0
8秒前
xsc完成签到,获得积分10
9秒前
求知若渴完成签到,获得积分10
9秒前
9秒前
Jie_huang完成签到,获得积分10
10秒前
啦啦啦啦啦完成签到,获得积分10
10秒前
sunshine完成签到 ,获得积分10
10秒前
斑鸠津发布了新的文献求助10
10秒前
66完成签到,获得积分10
11秒前
11秒前
nyfz2002发布了新的文献求助10
12秒前
genova完成签到,获得积分10
14秒前
帅气的寻琴完成签到,获得积分10
15秒前
15秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Engineering the boosting of the magnetic Purcell factor with a composite structure based on nanodisk and ring resonators 240
Selenium in ruminant nutrition and health 200
Study of enhancing employee engagement at workplace by adopting internet of things 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3837639
求助须知:如何正确求助?哪些是违规求助? 3379770
关于积分的说明 10510571
捐赠科研通 3099382
什么是DOI,文献DOI怎么找? 1707090
邀请新用户注册赠送积分活动 821427
科研通“疑难数据库(出版商)”最低求助积分说明 772615