Machine learning - based q-RASAR modeling to predict acute contact toxicity of binary organic pesticide mixtures in honey bees

数量结构-活动关系 支持向量机 可预测性 人工智能 稳健性(进化) 机器学习 相似性(几何) 二元分类 偏最小二乘回归 计算机科学 模式识别(心理学) 数学 统计 化学 图像(数学) 基因 生物化学
作者
Mainak Chatterjee,Arkaprava Banerjee,Simone Tosi,Edoardo Carnesecchi,Emilio Benfenati,Kunal Roy
出处
期刊:Journal of Hazardous Materials [Elsevier BV]
卷期号:460: 132358-132358 被引量:32
标识
DOI:10.1016/j.jhazmat.2023.132358
摘要

We have reported here a quantitative read-across structure-activity relationship (q-RASAR) model for the prediction of binary mixture toxicity (acute contact toxicity) in honey bees. Both the quantitative structure-activity relationship (QSAR) and the similarity-based read-across algorithms are used simultaneously for enhancing the predictability of the model. Several similarity and error-based parameters, obtained from the read-across prediction tool, have been put together with the structural and physicochemical descriptors to develop the final q-RASAR model. The calculated statistical and validation metrics indicate the goodness-of-fit, robustness, and good predictability of the partial least squares (PLS) regression model. Machine learning algorithms like ridge regression, linear support vector machine (SVM), and non-linear SVM have been used to further enhance the predictability of the q-RASAR model. The prediction quality of the q-RASAR models outperforms the previously reported quasi-SMILEs-based QSAR model in terms of external correlation coefficient (Q2F1 SVM q-RASAR: 0.935 vs. Q2VLD QSAR: 0.89). In this research, the toxicity values of several new untested binary mixtures have been predicted with the new models, and the reliability of the PLS predictions has been validated by the prediction reliability indicator tool. The q-RASAR approach can be used as reliable, complementary, and integrative to the conventional experimental approaches of pesticide mixture risk assessment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
66m37发布了新的文献求助20
2秒前
5秒前
大胆十三发布了新的文献求助30
6秒前
chen完成签到,获得积分10
9秒前
Nnn发布了新的文献求助10
10秒前
YYJ发布了新的文献求助10
10秒前
liynn1完成签到,获得积分10
11秒前
晓晓晓完成签到,获得积分10
11秒前
11秒前
科通研AI发布了新的文献求助10
12秒前
科研通AI5应助qq采纳,获得10
13秒前
15秒前
16秒前
16秒前
18秒前
18秒前
18秒前
www152完成签到,获得积分10
19秒前
午午午午完成签到 ,获得积分10
19秒前
bkagyin应助wang采纳,获得10
20秒前
ww发布了新的文献求助10
20秒前
20秒前
20秒前
21秒前
吴小白发布了新的文献求助30
21秒前
孙铭逊发布了新的文献求助10
22秒前
林狗发布了新的文献求助10
22秒前
安详夏彤发布了新的文献求助10
22秒前
宝川发布了新的文献求助10
23秒前
科研通AI5应助Bruce采纳,获得10
23秒前
润润润发布了新的文献求助10
25秒前
小唐完成签到,获得积分10
25秒前
25秒前
25秒前
快乐难敌完成签到,获得积分10
25秒前
段段发布了新的文献求助10
26秒前
26秒前
26秒前
27秒前
高分求助中
Algorithmic Mathematics in Machine Learning 500
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
Pleistocene Mammals of North America 200
The Rice Blast Fungus and Allied Species: A Monograph of the Fungal Order Magnaporthales 200
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3832761
求助须知:如何正确求助?哪些是违规求助? 3375209
关于积分的说明 10487973
捐赠科研通 3094818
什么是DOI,文献DOI怎么找? 1703996
邀请新用户注册赠送积分活动 819723
科研通“疑难数据库(出版商)”最低求助积分说明 771623