计算机科学
卷积神经网络
稳健性(进化)
核(代数)
可扩展性
人工智能
炸薯条
CMOS芯片
深度学习
人工神经网络
分类器(UML)
模式识别(心理学)
计算机硬件
电子工程
电信
化学
工程类
组合数学
基因
数据库
生物化学
数学
作者
Omid Poordashtban,Mahmood Reza Marzabn,Amin Khavasi
出处
期刊:IEEE Access
[Institute of Electrical and Electronics Engineers]
日期:2023-01-01
卷期号:11: 61728-61737
被引量:8
标识
DOI:10.1109/access.2023.3287094
摘要
Compact and low-power CMOS-compatible hardware can be used for on-chip optical neural networks (ONNs), enabling affordable and portable image classification solutions for applications like autonomous vehicles, healthcare, and optical communication. In this work, we propose a novel one-dimensional Optical Convolutional Neural Network (OCNN) architecture that significantly reduces the number of learnable parameters required for an ONN. Our OCNN achieves an impressive accuracy of over 96% as a pattern classifier, utilizing only 90 learnable parameters, leading to a simpler structure compared to existing on-chip ONNs. Additionally, our OCNN demonstrates scalability and robustness, with an accuracy exceeding 89% in handwritten digit classification. The OCNN’s convolutional layer employs a lenslet 4f system for convolving desired kernels on input images, while an on-chip lens facilitates the desired Fourier Transform effortlessly. The subsequent layer consists of a single metaline layer, implementing a fully connected layer. By parallelizing pre-trained OCNNs, an on-chip deep convolutional neural network (CNN) can be realized, where each OCNN functions as a separate kernel within a conventional CNN.
科研通智能强力驱动
Strongly Powered by AbleSci AI