Accuracy and clinical validity of automated cephalometric analysis using convolutional neural networks

地标 头影测量分析 口腔正畸科 头影测量 射线照相术 卷积神经网络 人工智能 数学 医学 计算机科学 放射科
作者
S B Kang,In-Hwan Kim,Yoon‐Ji Kim,Namkug Kim,Seung‐Hak Baek,Sang‐Jin Sung
出处
期刊:Orthodontics & Craniofacial Research [Wiley]
卷期号:27 (1): 64-77 被引量:6
标识
DOI:10.1111/ocr.12683
摘要

Abstract Background This study aimed to assess the error range of cephalometric measurements based on the landmarks detected using cascaded CNNs and determine how horizontal and vertical positional errors of individual landmarks affect lateral cephalometric measurements. Methods In total, 120 lateral cephalograms were obtained consecutively from patients (mean age, 32.5 ± 11.6) who visited the Asan Medical Center, Seoul, Korea, for orthodontic treatment between 2019 and 2021. An automated lateral cephalometric analysis model previously developed from a nationwide multi‐centre database was used to digitize the lateral cephalograms. The horizontal and vertical landmark position error attributable to the AI model was defined as the distance between the landmark identified by the human and that identified by the AI model on the x‐ and y‐axes. The differences between the cephalometric measurements based on the landmarks identified by the AI model vs those identified by the human examiner were assessed. The association between the lateral cephalometric measurements and the positioning errors in the landmarks comprising the cephalometric measurement was assessed. Results The mean difference in the angular and linear measurements based on AI vs human landmark localization was .99 ± 1.05°, and .80 ± .82 mm, respectively. Significant differences between the measurements derived from AI‐based and human localization were observed for all cephalometric variables except SNA, pog‐Nperp, facial angle, SN‐GoGn, FMA, Bjork sum, U1‐SN, U1‐FH, IMPA, L1‐NB (angular) and interincisal angle. Conclusions The errors in landmark positions, especially those that define reference planes, may significantly affect cephalometric measurements. The possibility of errors generated by automated lateral cephalometric analysis systems should be considered when using such systems for orthodontic diagnoses.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阿柴_Htao完成签到,获得积分20
刚刚
英俊铸海发布了新的文献求助10
1秒前
rich发布了新的文献求助30
1秒前
阳光问安完成签到 ,获得积分10
1秒前
标致溪流完成签到,获得积分10
2秒前
6秒前
SigRosa完成签到,获得积分10
9秒前
dreamlife发布了新的文献求助10
10秒前
GUGU完成签到 ,获得积分10
12秒前
852发布了新的文献求助10
14秒前
14秒前
阿柴_Htao关注了科研通微信公众号
15秒前
GUGU关注了科研通微信公众号
16秒前
Lyn完成签到 ,获得积分10
17秒前
荔枝多酚完成签到,获得积分10
18秒前
kkkl完成签到,获得积分10
20秒前
YIEYA完成签到 ,获得积分10
21秒前
YiyueChan完成签到,获得积分10
21秒前
23秒前
23秒前
dreamlife完成签到,获得积分10
23秒前
Jonathan完成签到,获得积分10
25秒前
huangjing发布了新的文献求助10
28秒前
QL驳回了田様应助
29秒前
dennisysz发布了新的文献求助10
30秒前
库凯伊完成签到,获得积分10
30秒前
30秒前
31秒前
Bear完成签到 ,获得积分10
35秒前
35秒前
李爱国应助ah爱科研采纳,获得10
36秒前
项烙发布了新的文献求助10
36秒前
年三月完成签到 ,获得积分10
38秒前
苹果问安完成签到,获得积分10
39秒前
幽凡发布了新的文献求助10
40秒前
rich完成签到,获得积分20
43秒前
45秒前
小6s发布了新的文献求助10
50秒前
王多肉完成签到,获得积分10
50秒前
淡淡半莲发布了新的文献求助10
52秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777414
求助须知:如何正确求助?哪些是违规求助? 3322767
关于积分的说明 10211585
捐赠科研通 3038128
什么是DOI,文献DOI怎么找? 1667131
邀请新用户注册赠送积分活动 797971
科研通“疑难数据库(出版商)”最低求助积分说明 758103