A Machine-Learning-Based Seismic Vulnerability Assessment Approach for Low-Rise RC Buildings

脆弱性(计算) 脆弱性评估 钢筋混凝土 结构工程 低层 工程类 地震学 计算机科学 地质学 心理学 计算机安全 心理弹性 心理治疗师
作者
Niloofar Elyasi,Eugene Kim,Chul Min Yeum
出处
期刊:Journal of Earthquake Engineering [Taylor & Francis]
卷期号:28 (3): 760-776 被引量:21
标识
DOI:10.1080/13632469.2023.2220033
摘要

Seismic vulnerability evaluation of existing buildings is essential to minimize the destructive impacts of earthquakes. Rapid visual screening (RVS) methods are simple and effective vulnerability assessment techniques to help quickly identify high-risk buildings for more detailed evaluations. Among various RVS methods, the Hassan–Sozen priority index (PI) is one of the simplest methods that can be used for low-rise reinforced concrete (RC) buildings. The PI relates simple, easily attainable geometric features of a building including number of stories, floor area, column area, and wall area to damageability. However, the relationship is overly simplified, and there is no absolute basis for defining damage classification boundaries that can be used to interpret the PI. Furthermore, given the lack of seismic parameters as inputs, the PI only allows for a relative evaluation of buildings in a specific region. To address these issues and develop a more broadly applicable RVS method, this study first proposes an improved PI evaluation method using machine learning techniques to define damage classification boundaries. Then, a new generalized RVS method is proposed that considers the PI input features and earthquake intensity measures to predict damage states. Data from six post-earthquake damage surveys (Duzce (1999), Bingol (2003), Nepal (2015), Taiwan (2016), Ecuador (2016), and Pohang (2017)) are used to train and evaluate the classification models. Two earthquake intensity features, modified Mercalli intensity and peak ground acceleration, are introduced to develop a new earthquake intensity aware RVS. The results of the proposed methodologies show a considerable improvement from the original PI with no judgment needed to define the damage classification boundaries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
友好的芒果完成签到,获得积分10
1秒前
1秒前
2秒前
2秒前
符寄柔完成签到,获得积分20
2秒前
胡子发布了新的文献求助10
2秒前
2秒前
狂野未来完成签到,获得积分10
3秒前
3秒前
田様应助扶风阁主采纳,获得10
3秒前
caicailang84完成签到,获得积分10
3秒前
苗松发布了新的文献求助10
4秒前
4秒前
1434683426完成签到 ,获得积分10
4秒前
拾个勤天完成签到,获得积分10
4秒前
4秒前
4秒前
vida完成签到 ,获得积分10
5秒前
风趣问蕊发布了新的文献求助10
5秒前
三水发布了新的文献求助10
6秒前
沙之聚发布了新的文献求助10
6秒前
6秒前
酷奔完成签到 ,获得积分10
6秒前
脑洞疼应助唐棠采纳,获得10
6秒前
松松松发布了新的文献求助10
7秒前
NexusExplorer应助辛勤的乌采纳,获得10
7秒前
7秒前
7秒前
8秒前
大模型应助ASZXDW采纳,获得10
9秒前
yoyo发布了新的文献求助10
9秒前
笑点低的茉莉完成签到,获得积分10
9秒前
9秒前
9秒前
徐魁完成签到,获得积分10
10秒前
叶雯静发布了新的文献求助30
10秒前
10秒前
xxxxxxx发布了新的文献求助10
10秒前
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
“Now I Have My Own Key”: The Impact of Housing Stability on Recovery and Recidivism Reduction Using a Recovery Capital Framework 500
PRINCIPLES OF BEHAVIORAL ECONOMICS Microeconomics & Human Behavior 400
The Red Peril Explained: Every Man, Woman & Child Affected 400
The Social Work Ethics Casebook(2nd,Frederic G. Reamer) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5013783
求助须知:如何正确求助?哪些是违规求助? 4254841
关于积分的说明 13259428
捐赠科研通 4058033
什么是DOI,文献DOI怎么找? 2219493
邀请新用户注册赠送积分活动 1228981
关于科研通互助平台的介绍 1151575