A Machine-Learning-Based Seismic Vulnerability Assessment Approach for Low-Rise RC Buildings

脆弱性(计算) 脆弱性评估 钢筋混凝土 结构工程 低层 工程类 地震学 计算机科学 地质学 心理学 计算机安全 心理弹性 心理治疗师
作者
Niloofar Elyasi,Eugene Kim,Chul Min Yeum
出处
期刊:Journal of Earthquake Engineering [Informa]
卷期号:28 (3): 760-776 被引量:21
标识
DOI:10.1080/13632469.2023.2220033
摘要

Seismic vulnerability evaluation of existing buildings is essential to minimize the destructive impacts of earthquakes. Rapid visual screening (RVS) methods are simple and effective vulnerability assessment techniques to help quickly identify high-risk buildings for more detailed evaluations. Among various RVS methods, the Hassan–Sozen priority index (PI) is one of the simplest methods that can be used for low-rise reinforced concrete (RC) buildings. The PI relates simple, easily attainable geometric features of a building including number of stories, floor area, column area, and wall area to damageability. However, the relationship is overly simplified, and there is no absolute basis for defining damage classification boundaries that can be used to interpret the PI. Furthermore, given the lack of seismic parameters as inputs, the PI only allows for a relative evaluation of buildings in a specific region. To address these issues and develop a more broadly applicable RVS method, this study first proposes an improved PI evaluation method using machine learning techniques to define damage classification boundaries. Then, a new generalized RVS method is proposed that considers the PI input features and earthquake intensity measures to predict damage states. Data from six post-earthquake damage surveys (Duzce (1999), Bingol (2003), Nepal (2015), Taiwan (2016), Ecuador (2016), and Pohang (2017)) are used to train and evaluate the classification models. Two earthquake intensity features, modified Mercalli intensity and peak ground acceleration, are introduced to develop a new earthquake intensity aware RVS. The results of the proposed methodologies show a considerable improvement from the original PI with no judgment needed to define the damage classification boundaries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xpy完成签到,获得积分10
1秒前
李盛华完成签到,获得积分10
1秒前
天天快乐应助12采纳,获得10
1秒前
曼珠沙华完成签到,获得积分10
1秒前
2秒前
4秒前
孟春纪事应助ixueyi采纳,获得10
4秒前
Brooks发布了新的文献求助30
4秒前
4秒前
Akim应助瓜豆瓜豆瓜采纳,获得10
4秒前
sora98发布了新的文献求助10
5秒前
李爱国应助ganjin采纳,获得10
5秒前
顾矜应助okabe采纳,获得10
7秒前
real发布了新的文献求助10
7秒前
8秒前
科研通AI6.1应助天道酬勤采纳,获得10
8秒前
ccl发布了新的文献求助10
8秒前
8秒前
yaoshun40发布了新的文献求助10
8秒前
平常书翠完成签到 ,获得积分10
9秒前
爆米花应助美满的亦竹采纳,获得20
10秒前
丘比特应助宁过儿采纳,获得10
11秒前
英俊的铭应助jade257采纳,获得10
12秒前
现代书雪发布了新的文献求助10
13秒前
科研通AI6.1应助苗浩阳采纳,获得10
13秒前
Brooks完成签到,获得积分10
15秒前
量子星尘发布了新的文献求助10
15秒前
15秒前
量子星尘发布了新的文献求助10
16秒前
月亮不会奔你而来完成签到,获得积分10
16秒前
在水一方应助鱼鱼采纳,获得10
19秒前
19秒前
不爱看文献完成签到,获得积分10
20秒前
Sea_moon发布了新的文献求助10
20秒前
bear应助现代书雪采纳,获得10
20秒前
yy发布了新的文献求助30
20秒前
无花果应助风清扬采纳,获得10
20秒前
20秒前
20秒前
李健应助唐晓秦采纳,获得10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Agyptische Geschichte der 21.30. Dynastie 2000
Global Ingredients & Formulations Guide 2014, Hardcover 1000
Research for Social Workers 1000
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5812562
求助须知:如何正确求助?哪些是违规求助? 5904439
关于积分的说明 15534914
捐赠科研通 4936262
什么是DOI,文献DOI怎么找? 2658235
邀请新用户注册赠送积分活动 1604659
关于科研通互助平台的介绍 1559551