Cross-domain recommendation via user interest alignment

计算机科学 领域(数学分析) 数学 数学分析
作者
Chuang Zhao,Hongke Zhao,Ming He,Jian Zhang,Jianping Fan
标识
DOI:10.1145/3543507.3583263
摘要

Cross-domain recommendation aims to leverage knowledge from multiple domains to alleviate the data sparsity and cold-start problems in traditional recommender systems. One popular paradigm is to employ overlapping user representations to establish domain connections, thereby improving recommendation performance in all scenarios. Nevertheless, the general practice of this approach is to train user embeddings in each domain separately and then aggregate them in a plain manner, often ignoring potential cross-domain similarities between users and items. Furthermore, considering that their training objective is recommendation task-oriented without specific regularizations, the optimized embeddings disregard the interest alignment among user's views, and even violate the user's original interest distribution. To address these challenges, we propose a novel cross-domain recommendation framework, namely COAST, to improve recommendation performance on dual domains by perceiving the cross-domain similarity between entities and aligning user interests. Specifically, we first construct a unified cross-domain heterogeneous graph and redefine the message passing mechanism of graph convolutional networks to capture high-order similarity of users and items across domains. Targeted at user interest alignment, we develop deep insights from two more fine-grained perspectives of user-user and user-item interest invariance across domains by virtue of affluent unsupervised and semantic signals. We conduct intensive experiments on multiple tasks, constructed from two large recommendation data sets. Extensive results show COAST consistently and significantly outperforms state-of-the-art cross-domain recommendation algorithms as well as classic single-domain recommendation methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
半圆亻发布了新的文献求助10
1秒前
1秒前
2秒前
3秒前
3秒前
3秒前
飲啖茶发布了新的文献求助50
3秒前
4秒前
克里斯蒂娜完成签到,获得积分10
5秒前
6秒前
吴欢欢完成签到,获得积分10
6秒前
汉堡包应助从容的小天鹅采纳,获得10
6秒前
6秒前
情怀应助史萌采纳,获得10
7秒前
7秒前
8秒前
所所应助生生不息采纳,获得10
8秒前
8秒前
英俊的铭应助plq采纳,获得10
9秒前
量子星尘发布了新的文献求助10
9秒前
烟花应助生动的易云采纳,获得10
9秒前
暮鼓完成签到,获得积分20
10秒前
小灰灰完成签到 ,获得积分10
10秒前
无辜吐司发布了新的文献求助10
10秒前
婷刘发布了新的文献求助10
11秒前
11秒前
黄海发布了新的文献求助10
12秒前
千岛完成签到,获得积分10
12秒前
ZHL应助li采纳,获得60
13秒前
13秒前
Candy发布了新的文献求助10
13秒前
雾岛看海完成签到,获得积分10
14秒前
15秒前
15秒前
田様应助134采纳,获得10
16秒前
16秒前
16秒前
Hello应助无辜吐司采纳,获得10
17秒前
19秒前
卷心菜完成签到,获得积分10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5662810
求助须知:如何正确求助?哪些是违规求助? 4844934
关于积分的说明 15101206
捐赠科研通 4821125
什么是DOI,文献DOI怎么找? 2580580
邀请新用户注册赠送积分活动 1534718
关于科研通互助平台的介绍 1493173