Application of artificial intelligence for improving early detection and prediction of therapeutic outcomes for gastric cancer in the era of precision oncology

人工智能 癌症 深度学习 机器学习 人工神经网络 精密医学 计算机科学 医学 病理 内科学
作者
Zhe Wang,Yang Liu,Xing Niu
出处
期刊:Seminars in Cancer Biology [Elsevier BV]
卷期号:93: 83-96 被引量:54
标识
DOI:10.1016/j.semcancer.2023.04.009
摘要

Gastric cancer is a leading contributor to cancer incidence and mortality globally. Recently, artificial intelligence approaches, particularly machine learning and deep learning, are rapidly reshaping the full spectrum of clinical management for gastric cancer. Machine learning is formed from computers running repeated iterative models for progressively improving performance on a particular task. Deep learning is a subtype of machine learning on the basis of multilayered neural networks inspired by the human brain. This review summarizes the application of artificial intelligence algorithms to multi-dimensional data including clinical and follow-up information, conventional images (endoscope, histopathology, and computed tomography (CT)), molecular biomarkers, etc. to improve the risk surveillance of gastric cancer with established risk factors; the accuracy of diagnosis, and survival prediction among established gastric cancer patients; and the prediction of treatment outcomes for assisting clinical decision making. Therefore, artificial intelligence makes a profound impact on almost all aspects of gastric cancer from improving diagnosis to precision medicine. Despite this, most established artificial intelligence-based models are in a research-based format and often have limited value in real-world clinical practice. With the increasing adoption of artificial intelligence in clinical use, we anticipate the arrival of artificial intelligence-powered gastric cancer care.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
SciGPT应助无敌咖啡豆采纳,获得10
1秒前
1秒前
王王发布了新的文献求助10
3秒前
牙牙发布了新的文献求助10
3秒前
3秒前
5秒前
yzy发布了新的文献求助10
5秒前
whale完成签到,获得积分10
5秒前
6秒前
6秒前
淡然又菡完成签到,获得积分10
6秒前
冰火完成签到,获得积分10
7秒前
chenqiumu应助雀跃采纳,获得20
7秒前
7秒前
香蕉觅云应助理塘大学士采纳,获得10
7秒前
8秒前
9秒前
直率书包发布了新的文献求助10
10秒前
10秒前
10秒前
10秒前
10秒前
我是老大应助聪明的芹菜采纳,获得10
11秒前
JamesPei应助am采纳,获得10
11秒前
徐rl发布了新的文献求助10
11秒前
11秒前
打打应助Randy采纳,获得10
11秒前
11秒前
shao完成签到,获得积分10
11秒前
12秒前
12秒前
宋依依发布了新的文献求助10
12秒前
12秒前
兔子发布了新的文献求助30
13秒前
13秒前
西瓜妹完成签到,获得积分10
13秒前
只是听说发布了新的文献求助10
13秒前
13秒前
鸭梨发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Constitutional and Administrative Law 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5261534
求助须知:如何正确求助?哪些是违规求助? 4422611
关于积分的说明 13766957
捐赠科研通 4297120
什么是DOI,文献DOI怎么找? 2357697
邀请新用户注册赠送积分活动 1354066
关于科研通互助平台的介绍 1315260