MMGCL: Meta Knowledge-Enhanced Multi-view Graph Contrastive Learning for Recommendations

计算机科学 知识图 图形 自然语言处理 人工智能 理论计算机科学
作者
Yuezihan Jiang,Changyu Li,Gaode Chen,Peiyi Li,Qi Zhang,Jingjian Lin,Peng Jiang,Fei Sun,Wentao Zhang
标识
DOI:10.1145/3640457.3688127
摘要

Multi-view Graph Learning is popular in recommendations due to its ability to capture relationships and connections across multiple views. Existing multi-view graph learning methods generally involve constructing graphs of views and performing information aggregation on view representations. Despite their effectiveness, they face two data limitations: Multi-focal Multi-source data noise and multi-source Data Sparsity. The former arises from the combination of noise from individual views and conflicting edges between views when information from all views is combined. The latter occurs because multi-view learning exacerbate the negative influence of data sparsity because these methods require more model parameters to learn more view information. Motivated by these issues, we propose MMGCL, a meta knowledge-enhanced multi-view graph contrastive learning framework for recommendations. To tackle the data noise issue, MMGCL extract meta knowledge to preserve important information from all views to form a meta view representation. It then rectifies every view in multi-learning frameworks, thus simultaneously removing the view-private noisy edges and conflicting edges across different views. To address the data sparsity issue, MMGCL performs meta knowledge transfer contrastive learning optimization on all views to reduce the searching space for model parameters and add more supervised signal. Besides, we have deployed MMGCL in a real industrial recommender system in China, and we further evaluate it on three benchmark datasets and a practical industry online application. Extensive experiments on these datasets demonstrate the state-of-the-art recommendation performance of MMGCL.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
江野ooooooooooooo关注了科研通微信公众号
刚刚
顾矜应助北冥有鱼采纳,获得10
刚刚
王紫荆完成签到,获得积分10
1秒前
1秒前
夕阳红红完成签到,获得积分20
1秒前
善学以致用应助飞学book采纳,获得10
1秒前
suijinicheng完成签到,获得积分10
2秒前
2秒前
2秒前
忧郁含海发布了新的文献求助10
2秒前
3秒前
3秒前
撒哈拉的故事完成签到 ,获得积分10
3秒前
努力学习发布了新的文献求助10
3秒前
小咸鱼完成签到 ,获得积分10
4秒前
4秒前
Yezo完成签到,获得积分10
4秒前
刘晨旭发布了新的文献求助10
8秒前
梁大海完成签到,获得积分10
8秒前
秦pale发布了新的文献求助10
8秒前
9秒前
ding应助甜崽小肉丸采纳,获得10
9秒前
9秒前
是你完成签到,获得积分10
9秒前
卢珈馨发布了新的文献求助10
11秒前
12秒前
VQM232发布了新的文献求助20
12秒前
12秒前
13秒前
14秒前
14秒前
Yezo发布了新的文献求助30
15秒前
16秒前
今后应助zj采纳,获得10
16秒前
顺颂时祺发布了新的文献求助10
16秒前
16秒前
每文完成签到,获得积分10
16秒前
16秒前
16秒前
WWWXM发布了新的文献求助10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Investigative Interviewing: Psychology and Practice 300
Atlas of Anatomy (Fifth Edition) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5286781
求助须知:如何正确求助?哪些是违规求助? 4439406
关于积分的说明 13821497
捐赠科研通 4321398
什么是DOI,文献DOI怎么找? 2371854
邀请新用户注册赠送积分活动 1367418
关于科研通互助平台的介绍 1330879