Detection of cancer‐associated cachexia in lung cancer patients using whole‐body [18F]FDG‐PET/CT imaging: A multi‐centre study

医学 正电子发射断层摄影术 核医学 肺癌 标准摄取值 癌症 全身成像 分级(工程) PET-CT Pet成像 恶病质 放射科 内科学 土木工程 工程类
作者
Daria Ferrara,Elisabetta Abenavoli,Thomas Beyer,Stefan Gruenert,Marcus Hacker,Swen Hesse,Lukas Hofmann,Smilla Pusitz,Michael Rullmann,Osama Sabri,Roberto Sciagrà,Lalith Kumar Shiyam Sundar,Anke Tönjes,Hubert Wirtz,Josef Yu,Armin Frille
出处
期刊:Journal of Cachexia, Sarcopenia and Muscle [Springer Science+Business Media]
卷期号:15 (6): 2375-2386 被引量:3
标识
DOI:10.1002/jcsm.13571
摘要

Abstract Background Cancer‐associated cachexia (CAC) is a metabolic syndrome contributing to therapy resistance and mortality in lung cancer patients (LCP). CAC is typically defined using clinical non‐imaging criteria. Given the metabolic underpinnings of CAC and the ability of [ 18 F]fluoro‐2‐deoxy‐D‐glucose (FDG)‐positron emission tomography (PET)/computer tomography (CT) to provide quantitative information on glucose turnover, we evaluate the usefulness of whole‐body (WB) PET/CT imaging, as part of the standard diagnostic workup of LCP, to provide additional information on the onset or presence of CAC. Methods This multi‐centre study included 345 LCP who underwent WB [ 18 F]FDG‐PET/CT imaging for initial clinical staging. A weight loss grading system (WLGS) adjusted to body mass index was used to classify LCP into ‘No CAC’ (WLGS‐0/1 at baseline prior treatment and at first follow‐up: N = 158, 51F/107M), ‘Dev CAC’ (WLGS‐0/1 at baseline and WLGS‐3/4 at follow‐up: N = 90, 34F/56M), and ‘CAC’ (WLGS‐3/4 at baseline: N = 97, 31F/66M). For each CAC category, mean standardized uptake values (SUV) normalized to aorta uptake (<SUV aorta >) and CT‐defined volumes were extracted for abdominal and visceral organs, muscles, and adipose‐tissue using automated image segmentation of baseline [ 18 F]FDG‐PET/CT images. Imaging and non‐imaging parameters from laboratory tests were compared statistically. A machine‐learning (ML) model was then trained to classify LCP as ‘No CAC’, ‘Dev CAC’, and ‘CAC’ based on their imaging parameters. SHapley Additive exPlanations (SHAP) analysis was employed to identify the key factors contributing to CAC development for each patient. Results The three CAC categories displayed multi‐organ differences in <SUV aorta >. In all target organs, <SUV aorta > was higher in the ‘CAC’ cohort compared with ‘No CAC’ ( P < 0.01), except for liver and kidneys, where <SUV aorta > in ‘CAC’ was reduced by 5%. The ‘Dev CAC’ cohort displayed a small but significant increase in <SUV aorta > of pancreas (+4%), skeletal‐muscle (+7%), subcutaneous adipose‐tissue (+11%), and visceral adipose‐tissue (+15%). In ‘CAC’ patients, a strong negative Spearman correlation (ρ = −0.8) was identified between <SUV aorta > and volumes of adipose‐tissue. The machine‐learning model identified ‘CAC’ at baseline with 81% of accuracy, highlighting <SUV aorta > of spleen, pancreas, liver, and adipose‐tissue as most relevant features. The model performance was suboptimal (54%) when classifying ‘Dev CAC’ versus ‘No CAC’. Conclusions WB [ 18 F]FDG‐PET/CT imaging reveals groupwise differences in the multi‐organ metabolism of LCP with and without CAC, thus highlighting systemic metabolic aberrations symptomatic of cachectic patients. Based on a retrospective cohort, our ML model identified patients with CAC with good accuracy. However, its performance in patients developing CAC was suboptimal. A prospective, multi‐centre study has been initiated to address the limitations of the present retrospective analysis.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Yoc发布了新的文献求助10
1秒前
3秒前
4秒前
wintersss发布了新的文献求助10
4秒前
wanci应助万宁采纳,获得10
5秒前
kanuary发布了新的文献求助50
6秒前
加油发布了新的文献求助10
6秒前
7秒前
yliaoyou完成签到,获得积分10
8秒前
诚心幻柏完成签到,获得积分20
8秒前
103921wjk发布了新的文献求助10
9秒前
10秒前
晚风发布了新的文献求助10
10秒前
10秒前
忧郁芹菜完成签到,获得积分20
11秒前
星辰大海应助nunu采纳,获得10
12秒前
踏实小蘑菇完成签到,获得积分10
12秒前
奇客完成签到,获得积分10
12秒前
14秒前
15秒前
CipherSage应助酷炫的不二采纳,获得10
15秒前
芋圆完成签到 ,获得积分10
15秒前
852应助鳥鳥采纳,获得10
16秒前
17秒前
脑洞疼应助wyyp采纳,获得10
17秒前
20秒前
liujunhong完成签到,获得积分10
20秒前
晚风完成签到,获得积分10
20秒前
20秒前
隐形曼青应助挣钱养刺猬采纳,获得30
21秒前
重要从灵完成签到,获得积分10
21秒前
Akim应助qq采纳,获得10
24秒前
liujunhong发布了新的文献求助10
24秒前
25秒前
26秒前
28秒前
科研通AI5应助平常雨泽采纳,获得10
28秒前
SciGPT应助今天不晚饭吃采纳,获得10
29秒前
忧郁的海豚关注了科研通微信公众号
29秒前
诚心幻柏发布了新的文献求助10
29秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Izeltabart tapatansine - AdisInsight 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3815115
求助须知:如何正确求助?哪些是违规求助? 3359118
关于积分的说明 10400037
捐赠科研通 3076704
什么是DOI,文献DOI怎么找? 1689964
邀请新用户注册赠送积分活动 813466
科研通“疑难数据库(出版商)”最低求助积分说明 767642