复合数
材料科学
风暴
纳米技术
化学工程
复合材料
海洋学
地质学
工程类
作者
Panpan Xue,Huilan Zhuang,Sijie Shao,Tingjie Bai,Xuemei Zeng,Shuangqian Yan
出处
期刊:ACS Nano
[American Chemical Society]
日期:2024-09-03
卷期号:18 (37): 25795-25812
被引量:21
标识
DOI:10.1021/acsnano.4c08574
摘要
The activation of cellular ferroptosis is promising in tumor therapy. However, ferroptosis is parallelly inhibited by antiferroptotic substances, including glutathione peroxidase 4 (GPX4), dihydroorotate dehydrogenase (DHODH), and ferroptosis suppressor protein 1 (FSP1). Thus, it is highly desirable, yet challenging, to simultaneously suppress these three antiferroptotic substances for activating ferroptosis. Here, we rationally designed a hollow iron-doped SiO2-based nanozyme (FeSHS) loaded with brequinar (BQR) and lificiguat (YC-1), named FeSHS/BQR/YC-1-PEG, for tumor ferroptosis activation. FeSHS were developed through the continuous etching of SiO2 nanoparticles by iron ions, which exhibit pH/glutathione-responsive biodegradability, along with mimicking the activities of peroxidase, glutathione oxidase, and NAD(P)H oxidase. Specifically, glutathione depletion and NAD(P)H oxidation by FeSHS will suppress the expression of GPX4 and inhibit FSP1 by disrupting the NAD(P)H/FSP1/ubiquinone axis. In addition, the released BQR can suppress the expression of DHODH. Meanwhile, YC-1 is able to increase the cellular polyunsaturated fatty acids (PUFAs) by destroying the HIF-1α/lipid droplet axis. The elevation of levels of iron and PUFAs while simultaneously disrupting the GPX4/DHODH/FSP1 inhibitory pathways by our designed nanoplatform displayed high therapeutic efficacy both in vitro and in vivo. This work elucidates rationally designing smart nanoplatforms for ferroptosis activation and future tumor treatments.
科研通智能强力驱动
Strongly Powered by AbleSci AI