A light CNN based on residual learning and background estimation for hyperspectral anomaly detection

异常检测 人工智能 残余物 高光谱成像 异常(物理) 马氏距离 模式识别(心理学) 计算机科学 一致性(知识库) 算法 物理 凝聚态物理
作者
Jiajia Zhang,Pei Xiang,Shi Jin,Xiang Teng,Dong Zhao,Huixin Zhou,Huan Li,Jiangluqi Song
出处
期刊:International journal of applied earth observation and geoinformation 卷期号:132: 104069-104069 被引量:3
标识
DOI:10.1016/j.jag.2024.104069
摘要

Existing deep learning-based hyperspectral anomaly detection methods typically perform anomaly detection by reconstructing a clean background. However, for the deep networks, there are many parameters that need to be adjusted. To reduce parameters of network and improve the performance of anomaly detection, a light CNN based on residual learning and background estimation was proposed. Different from traditional methods, the proposed method could directly learn anomaly features rather than background features. First, during the training stage, a background estimation method based on non-central convolution kernels was used to obtain the pseudo-background. Second, to purify the pseudo-background, a pair down-sampling method and a joint loss that combines cross-approximation background loss and consistency loss were proposed. Third, the anomaly matrix was obtained by the difference between the hyperspectral image (HSI) and the pseudo-background. Fourth, a light CNN with three layers was proposed to extract features of the anomaly matrix. Finally, during the prediction stage, anomaly detection results were calculated from the predicted anomaly matrix obtained by light CNN through the Mahalanobis distance. Experiments were conducted with multiple metrics on five real-world datasets. Compared with eight state-of-the-art methods, the proposed method achieved the superior performance in both qualitative and quantitative evaluations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
欣慰的以云完成签到 ,获得积分10
2秒前
巧克力完成签到 ,获得积分10
4秒前
Biom完成签到 ,获得积分10
7秒前
wuli发布了新的文献求助10
8秒前
13秒前
CodeCraft应助Soir采纳,获得10
14秒前
自然的冷珍完成签到,获得积分20
15秒前
18秒前
简亓发布了新的文献求助10
19秒前
19秒前
zz完成签到 ,获得积分10
19秒前
云淡风清完成签到 ,获得积分10
20秒前
20秒前
aa完成签到,获得积分10
21秒前
22秒前
23秒前
hea完成签到,获得积分10
24秒前
clearlove完成签到,获得积分10
25秒前
25秒前
完美世界应助蜡笔采纳,获得10
26秒前
Soir发布了新的文献求助10
26秒前
sfsdfs发布了新的文献求助10
26秒前
ThomasZ完成签到,获得积分10
30秒前
完美世界应助追寻飞风采纳,获得10
31秒前
领导范儿应助sfsdfs采纳,获得10
32秒前
大个应助简亓采纳,获得10
32秒前
玩命的紫南完成签到 ,获得积分10
35秒前
嘻嘻哈哈完成签到,获得积分10
35秒前
小乌龟完成签到,获得积分10
35秒前
36秒前
迅速星星完成签到 ,获得积分10
37秒前
顺心牛排完成签到,获得积分10
39秒前
曾经不言发布了新的文献求助10
40秒前
41秒前
41秒前
白英完成签到,获得积分10
42秒前
芒琪完成签到 ,获得积分10
42秒前
蜡笔发布了新的文献求助10
46秒前
追寻飞风发布了新的文献求助10
48秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781213
求助须知:如何正确求助?哪些是违规求助? 3326729
关于积分的说明 10228166
捐赠科研通 3041776
什么是DOI,文献DOI怎么找? 1669591
邀请新用户注册赠送积分活动 799118
科研通“疑难数据库(出版商)”最低求助积分说明 758751