Enhancing robustness of community structure in networks against attacks with gray information

稳健性(进化) 复杂网络 计算机科学 模块化设计 群落结构 计算机安全 数据挖掘 分布式计算 人工智能 机器学习 数学 统计 万维网 操作系统 基因 化学 生物化学
作者
Bo Yang,Xu Rao,Zhiyong Pei,Nuohan Li
出处
期刊:International Journal of Modern Physics C [World Scientific]
卷期号:36 (04)
标识
DOI:10.1142/s0129183124502176
摘要

In recent years, network science has received significant attention and application. As an important mesoscale structure of networks, community structure reveals the inherent modular structure and potential functionality of networks. Therefore, maintaining the community structure during attacks is crucial. Existing studies on community robustness primarily focus on two attack behaviors: malicious attacks and random failures. However, little is known on the community robustness in the more practical situations where the attackers have limited ability to access precise network information, leading to gray information attack behaviors. Hence, in this paper, we investigate the robustness of network communities under gray information attacks and the enhancing algorithms. Following the community robustness measure for the sequential attacks, we establish a unified evaluation framework for attacks with gray information by introducing a gray attack coefficient, which treats the usual random failures and malicious attacks as the two special situations in the proposed framework. Several enhancing algorithms with local search strategy are exquisitely devised. The efficacy of our framework and algorithms which significantly improve the community robustness against gray attacks is demonstrated by the experimental results on a variety of real-world networks. Our findings have important implications not only in enhancing the community robustness of existing networks but also in designing robust ones from the scratch, which paves the way to further understand and seek strategies and solutions for network community robustness with gray information.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
thenafly完成签到,获得积分10
2秒前
阳光的夏槐完成签到,获得积分10
5秒前
Eva完成签到,获得积分10
6秒前
Lty完成签到,获得积分20
10秒前
10秒前
11秒前
nikki发布了新的文献求助10
13秒前
搜集达人应助jia采纳,获得10
14秒前
18秒前
Shan完成签到 ,获得积分10
19秒前
Cynric关注了科研通微信公众号
22秒前
24秒前
wander完成签到,获得积分10
28秒前
完美世界应助现实的画板采纳,获得10
32秒前
Zx完成签到 ,获得积分10
34秒前
34秒前
35秒前
35秒前
Cynric发布了新的文献求助10
37秒前
bkagyin应助羽墨空空采纳,获得10
37秒前
Violet完成签到,获得积分10
40秒前
李健的粉丝团团长应助drew采纳,获得10
42秒前
44秒前
45秒前
牙瓜完成签到 ,获得积分10
46秒前
万能图书馆应助infognet采纳,获得10
46秒前
今天没有雨完成签到,获得积分10
47秒前
完美麦片完成签到,获得积分10
50秒前
Violet发布了新的文献求助10
51秒前
51秒前
infognet完成签到,获得积分10
54秒前
从容傲柏完成签到,获得积分10
55秒前
科研通AI2S应助沐秋如叶采纳,获得10
55秒前
王jh完成签到 ,获得积分10
56秒前
科目三应助RuoxuanWang采纳,获得10
56秒前
57秒前
infognet发布了新的文献求助10
57秒前
59秒前
59秒前
yinshaoyu21发布了新的文献求助10
1分钟前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800289
求助须知:如何正确求助?哪些是违规求助? 3345565
关于积分的说明 10325834
捐赠科研通 3062031
什么是DOI,文献DOI怎么找? 1680717
邀请新用户注册赠送积分活动 807201
科研通“疑难数据库(出版商)”最低求助积分说明 763557