已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Stable top-k periodic high-utility patterns mining over multi-sequence

理论(学习稳定性) 序列(生物学) 修剪 数据挖掘 计算机科学 过程(计算) 算法 机器学习 遗传学 生物 农学 操作系统
作者
Ziqian Ren,Yaling Xun,Jianghui Cai,Haifeng Yang
出处
期刊:Intelligent Data Analysis [IOS Press]
卷期号:: 1-24
标识
DOI:10.3233/ida-230672
摘要

Periodic high-utility sequential patterns (PHUSPs) mining is one of the research hotspots in data mining, which aims to discover patterns that not only have high utility but also regularly appear in sequence datasets. Traditional PHUSP mining mainly focuses on mining patterns from a single sequence, which often results in some interesting patterns being discarded due to strict constraints, and most of the discovered patterns are unstable and difficult to use for decision-making. In response to this issue, a novel algorithm called TKSPUS (top-k stable periodic high-utility sequential pattern mining) is proposed to discover stable top-k periodic high-utility sequential patterns that co-occur in multi-sequences. TKSPUS extends the traditional periodic high-utility sequential patterns mining, and designs two new metrics, namely utility stability coefficient (usc) and periodic stability coefficient (sr), to determine the periodic stability and utility stability of patterns in multi-sequences respectively. Additionally, the TKSPUS algorithm adopts the projection mechanism to mine stable periodic high-utility patterns over multi-sequence, while a new data structure called pusc and two corresponding pruning strategies are also introduced to boost the mining process. Experiments show that compared with the other four related algorithms, the TKSPUS algorithm has better performance in memory consumption and execution time, and the stability of the mining results is improved by 47% on average compared with the traditional periodic high-utility patterns mining algorithm.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
shinble发布了新的文献求助10
3秒前
在水一方完成签到,获得积分10
3秒前
Yolen LI完成签到,获得积分10
3秒前
4秒前
张中泽发布了新的文献求助30
5秒前
Angenstern完成签到 ,获得积分10
6秒前
9秒前
江城一霸完成签到,获得积分10
9秒前
江瑾玥完成签到,获得积分10
9秒前
Camellia完成签到 ,获得积分10
10秒前
阿豪要发文章完成签到 ,获得积分10
10秒前
微笑的铸海完成签到 ,获得积分10
11秒前
qinglongtsmc发布了新的文献求助10
12秒前
14秒前
koh完成签到,获得积分10
14秒前
999完成签到,获得积分10
19秒前
谢桓完成签到 ,获得积分10
20秒前
半斤完成签到 ,获得积分10
20秒前
友好冥王星完成签到 ,获得积分10
20秒前
21秒前
斯文败类应助chem采纳,获得10
21秒前
就看最后一篇完成签到 ,获得积分10
23秒前
JacekYu完成签到 ,获得积分10
24秒前
qinglongtsmc完成签到,获得积分10
24秒前
Runtofuture完成签到,获得积分10
25秒前
25秒前
26秒前
凌霄完成签到 ,获得积分10
28秒前
大理学子发布了新的文献求助10
29秒前
yingying完成签到 ,获得积分10
29秒前
30秒前
ning_qing完成签到 ,获得积分10
30秒前
31秒前
程小柒完成签到 ,获得积分10
31秒前
bkagyin应助penghui采纳,获得10
31秒前
33秒前
35秒前
zz完成签到 ,获得积分10
37秒前
Akim应助单纯的坤采纳,获得10
37秒前
39秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
材料概论 周达飞 ppt 500
Nonrandom distribution of the endogenous retroviral regulatory elements HERV-K LTR on human chromosome 22 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3807978
求助须知:如何正确求助?哪些是违规求助? 3352615
关于积分的说明 10359805
捐赠科研通 3068592
什么是DOI,文献DOI怎么找? 1685118
邀请新用户注册赠送积分活动 810319
科研通“疑难数据库(出版商)”最低求助积分说明 766013